OFFSET
0,2
COMMENTS
Every term is a triangular number. [Problem B-967 in Euler and Sadek, 2003; solution in Euler and Sadek, 2004]
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..395
Russ Euler and Jawad Sadek, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 41, No. 5 (2003), pp. 466-471.
Russ Euler and Jawad Sadek, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 42, No. 3 (2004), pp. 277-282.
Index entries for linear recurrences with constant coefficients, signature (323,-323,1).
FORMULA
From Colin Barker, Sep 16 2017: (Start)
G.f.: 10*x*(1 + x) / ((1 - x)*(1 - 322*x + x^2)).
a(n) = ((161+72*sqrt(5))^(-n)*(-1+(161+72*sqrt(5))^n)^2) / 32.
a(n) = 323*a(n-1) - 323*a(n-2) + a(n-3) for n > 2.
(End)
a(n) = 10*A298101(n). - Pontus von Brömssen, Jan 06 2025
MATHEMATICA
Table[(5/32) Fibonacci[6 n]^2, {n, 0, 13}] (* Michael De Vlieger, Sep 16 2017 *)
LinearRecurrence[{323, -323, 1}, {0, 10, 3240}, 20] (* Harvey P. Dale, Aug 31 2024 *)
PROG
(PARI) a(n) = (5/32)*fibonacci(6*n)^2
(Magma) [5*Fibonacci(6*n)^2/32: n in [0..20]]; // G. C. Greubel, Feb 03 2019
(Sage) [5*fibonacci(6*n)^2/32 for n in (0..20)] # G. C. Greubel, Feb 03 2019
(GAP) List([0..20], n-> 5*Fibonacci(6*n)^2/32); # G. C. Greubel, Feb 03 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Felix Fröhlich, Sep 16 2017
STATUS
approved