OFFSET
0,4
COMMENTS
a(n) is the product of p^floor(m(n,p)/2) over primes p<n, where m(n,p) is the number of carries when adding n to itself in base p. - Robert Israel, Sep 17 2017
Granville and Ramaré show that A006530(a(n)) > sqrt(n/5) if n >= 2082.
In particular a(n) -> infinity as n -> infinity. - Robert Israel, Sep 18 2017
LINKS
Robert Israel, Table of n, a(n) for n = 0..10000
A. Granville and O. Ramaré, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, Mathematika 43 (1996), 73-107, [DOI].
Eric Weisstein's World of Mathematics, Erdős Squarefree Conjecture
Wikipedia, Kummer's theorem
FORMULA
a(n) > 1 for n > 4.
EXAMPLE
binomial(10,5)/7 = 252/7 = 36 = a(5)^2.
binomial(12,6)/(3*7*11) = 924/231 = 4 = a(6)^2.
binomial(14,7)/(2*3*11*13) = 3432/858 = 4 = a(7)^2.
MAPLE
A000188:= n -> mul(t[1]^floor(t[2]/2), t = ifactors(n)[2]):
seq(A000188(binomial(2*n, n)), n=0..100); # Robert Israel, Sep 17 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 16 2017
STATUS
approved