login
A225764
Permanent of the n X n matrix M_n = [m_n(i,j)] with m_n(i,j) = Stirling2(n+i,j) for 1<=i,j<=n.
2
1, 1, 10, 3206, 70437736, 183833539918302, 87416643970622777251260, 10762624962747767163398087106191432, 462465255409000135911575652811547463563975232544, 8991898462406411877745541835505866750273920745448784932109344640
OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..28 (terms 0..22 from Alois P. Heinz)
EXAMPLE
a(3) = Permanent([1, 7, 6; 1, 15, 25; 1, 31, 90]) = 3206.
MAPLE
with(LinearAlgebra):
a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> Stirling2(n+i, j)))):
seq(a(n), n=0..10);
MATHEMATICA
a[n_] := Permanent[Table[StirlingS2[n+i, j], {i, n}, {j, n}]]; a[0] = 1; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jan 07 2016 *)
CROSSREFS
Cf. A036740 (determinant of M_n).
Sequence in context: A061543 A305666 A320307 * A243008 A133198 A292443
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 25 2013
STATUS
approved