The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158802 Recursive sequence as solution to a differential equation: a(n)=((n - 1)*(n - 3)*a(n - 1) - a(n - 2) + a(n - 3))/(n*(n - 1)) 0

%I

%S 0,1,-4,0,16,10,12,182,1120,7452,58640,520784,5142144,55929640,

%T 664505744,8562670920,118939979008,1771631324848,28168269788160,

%U 476151820931168,8526830353553920,161255217263900256

%N Recursive sequence as solution to a differential equation: a(n)=((n - 1)*(n - 3)*a(n - 1) - a(n - 2) + a(n - 3))/(n*(n - 1))

%D Martin Braun,Differential Equations and Their Applications : An Introduction to Applied Mathematics (Texts in Applied Mathematics, Vol. 11),Springer,1992,page283, Example 5.

%F a(n)=((n - 1)*(n - 3)*a(n - 1) - a(n - 2) + a(n - 3))/(n*(n - 1));

%F out_(n)=n*n!*a(n)

%t Clear[a, n];

%t a[0] = 1; a[1] = 1; a[2] = -1;

%t a[n_] := a[n] = ((n - 1)*(n - 3)*a[n - 1] - a[n - 2] + a[n - 3])/(n*(n - 1));

%t Table[n*n!*a[n], {n, 0, 30}]

%K sign,uned

%O 0,3

%A _Roger L. Bagula_, Mar 27 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 13:43 EDT 2021. Contains 347643 sequences. (Running on oeis4.)