This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000036 Let A(n) = #{(i,j): i^2 + j^2 <= n}, V(n) = Pi*n, P(n) = A(n) - V(n); A000099 gives values of n where |P(n)| sets a new record; sequence gives closest integer to P(A000099(n)). (Formerly M0610 N0221) 7

%I M0610 N0221

%S 2,3,5,6,6,-6,7,8,10,13,13,13,14,-17,17,17,18,-19,20,-22,23,27,-29,

%T -29,29,-31,-32,-35,36,-37,-40,-43,-46,-48,-50,-53,-55,-57,-60,-60,

%U -61,-63,-66,-66,-68,-71,-74,-77,-79,-82,-85,-88,-89,-92,-95,-96,-97,-97,-100

%N Let A(n) = #{(i,j): i^2 + j^2 <= n}, V(n) = Pi*n, P(n) = A(n) - V(n); A000099 gives values of n where |P(n)| sets a new record; sequence gives closest integer to P(A000099(n)).

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H David W. Wilson, <a href="/A000036/b000036.txt">Table of n, a(n) for n = 1..200</a>

%H W. C. Mitchell, <a href="http://dx.doi.org/10.1090/S0025-5718-1966-0195834-3">The number of lattice points in a k-dimensional hypersphere</a>, Math. Comp., 20 (1966), 300-310.

%F a(n) = round(P(A000099(n))), where P(n) = A057655(n)-pi*n. - _David W. Wilson_, May 15 2008

%t nmax = 6*10^4; A[n_] := 1 + 4*Floor[Sqrt[n]] + 4*Floor[Sqrt[n/2]]^2 + 8* Sum[Floor[Sqrt[n - j^2]], {j, Floor[Sqrt[n/2]] + 1, Floor[Sqrt[n]]}]; V[n_] := Pi*n; P[n_] := A[n] - V[n]; record = 0; A000036 = Reap[For[k = 0; n = 1, n <= nmax, n++, p = Abs[pn = P[n]]; If[p > record, record = p; k++; Sow[pn // Round]; Print["a(", k, ") = ", pn // Round]]]][[2, 1]] (* _Jean-François Alcover_, Feb 03 2016 *)

%Y Cf. A000092, A000099, A000223, A000323, A000413.

%K sign

%O 1,1

%A _N. J. A. Sloane_

%E Revised by _N. J. A. Sloane_, Jun 26 2005

%E More terms from _David W. Wilson_, May 15 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 22:50 EDT 2018. Contains 316252 sequences. (Running on oeis4.)