login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215116
G.f. satisfies: A(x) = x + 3*x^2 + x*A(A(A(A(x)))).
5
1, 4, 16, 256, 4864, 111616, 2983936, 89743360, 2970861568, 106768629760, 4125849419776, 170207219286016, 7454572671926272, 345078981839552512, 16822127738969128960, 860944587541763325952, 46137178395559050870784, 2582843669636660403896320, 150735442996358913332346880
OFFSET
1,2
COMMENTS
The (1/4)-iteration of the g.f. equals an integer series (A215117).
EXAMPLE
G.f.: A(x) = x + 4*x^2 + 16*x^3 + 256*x^4 + 4864*x^5 + 111616*x^6 + 2983936*x^7 +...
where
A(A(A(A(x)))) = x + 16*x^2 + 256*x^3 + 4864*x^4 + 111616*x^5 + 2983936*x^6 +...
Related expansions.
Let D(D(D(D(x)))) = A(x), then D(x) is an integer series where:
D(x) = x + x^2 + x^3 + 49*x^4 + 721*x^5 + 17281*x^6 + 452065*x^7 +...
where the coefficients of D(x) are congruent to 1 modulo 48.
PROG
(PARI) {a(n)=local(A=x+4*x^2); for(i=1, n, A=x+3*x^2+x*subst(A, x, subst(A, x, subst(A, x, A+x*O(x^n))))); polcoeff(A, n)}
for(n=1, 31, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 03 2012
STATUS
approved