login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = x + 3*x^2 + x*A(A(A(A(x)))).
5

%I #8 Aug 03 2012 14:53:58

%S 1,4,16,256,4864,111616,2983936,89743360,2970861568,106768629760,

%T 4125849419776,170207219286016,7454572671926272,345078981839552512,

%U 16822127738969128960,860944587541763325952,46137178395559050870784,2582843669636660403896320,150735442996358913332346880

%N G.f. satisfies: A(x) = x + 3*x^2 + x*A(A(A(A(x)))).

%C The (1/4)-iteration of the g.f. equals an integer series (A215117).

%e G.f.: A(x) = x + 4*x^2 + 16*x^3 + 256*x^4 + 4864*x^5 + 111616*x^6 + 2983936*x^7 +...

%e where

%e A(A(A(A(x)))) = x + 16*x^2 + 256*x^3 + 4864*x^4 + 111616*x^5 + 2983936*x^6 +...

%e Related expansions.

%e Let D(D(D(D(x)))) = A(x), then D(x) is an integer series where:

%e D(x) = x + x^2 + x^3 + 49*x^4 + 721*x^5 + 17281*x^6 + 452065*x^7 +...

%e where the coefficients of D(x) are congruent to 1 modulo 48.

%o (PARI) {a(n)=local(A=x+4*x^2); for(i=1,n,A=x+3*x^2+x*subst(A,x,subst(A,x,subst(A,x,A+x*O(x^n))))); polcoeff(A, n)}

%o for(n=1, 31, print1(a(n), ", "))

%Y Cf. A215117, A213010, A215114, A215116, A215118.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Aug 03 2012