The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258880 E.g.f. satisfies: A(x) = Integral 1 + A(x)^3 dx. 11
 1, 6, 540, 184680, 157600080, 270419925600, 816984611467200, 3971317527112003200, 29097143353353192480000, 305823675529741700675520000, 4435486895868663971869188480000, 86036822683997062842122964537600000, 2175352015640142857526698650779456000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Note: Sum_{n>=0} (-1)^n*x^(3*n+1)/(3*n+1) = log( (1+x)/(1-x^3)^(1/3) )/2 + Pi*sqrt(3)/18 - atan( (1-2*x)*sqrt(3)/3 )*sqrt(3)/3. LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..150 Guo-Niu Han, Jing-Yi Liu, Divisibility properties of the tangent numbers and its generalizations, arXiv:1707.08882 [math.CO], 2017. See Table for k = 3 p. 8. FORMULA E.g.f.: Series_Reversion( Integral 1/(1+x^3) dx ). E.g.f.: Series_Reversion( Sum_{n>=0} (-1)^n * x^(3*n+1)/(3*n+1) ). a(n) ~ 3^(15*n/2 + 17/4) * n^(3*n+1) / (exp(3*n) * (2*Pi)^(3*n+3/2)). - Vaclav Kotesovec, Jun 15 2015 EXAMPLE E.g.f.: A(x) = x + 6*x^4/4! + 540*x^7/7! + 184680*x^10/10! + 157600080*x^13/13! + 270419925600*x^16/16! +... where Series_Reversion(A(x)) = x - x^4/4 + x^7/7 - x^10/10 + x^13/13 - x^16/16 +... MATHEMATICA terms = 13; A[_] = 0; Do[A[x_] = Integrate[1 + A[x]^3, x] + O[x]^k // Normal, {k, 1, 3 terms}]; DeleteCases[CoefficientList[A[x], x] Range[0, 3 terms - 2]!, 0] (* Jean-François Alcover, Jul 25 2018 *) PROG (PARI) {a(n) = local(A=x); A = serreverse( sum(m=0, n, (-1)^m * x^(3*m+1)/(3*m+1) ) +O(x^(3*n+2)) ); (3*n+1)!*polcoeff(A, 3*n+1)} for(n=0, 20, print1(a(n), ", ")) (PARI) /* E.g.f. A(x) = Integral 1 + A(x)^3 dx.: */ {a(n) = local(A=x); for(i=1, n+1, A = intformal( 1 + A^3 + O(x^(3*n+2)) )); (3*n+1)!*polcoeff(A, 3*n+1)} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A000182, A000831, A258878, A258901, A258925, A258927, A259112, A259113, A258969. Sequence in context: A252174 A251697 A173789 * A367567 A121835 A159531 Adjacent sequences: A258877 A258878 A258879 * A258881 A258882 A258883 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 13 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 09:53 EDT 2024. Contains 373407 sequences. (Running on oeis4.)