login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259113
E.g.f. satisfies: A(x) = Integral 1 + A(x)^8 dx.
6
1, 40320, 18598035456000, 474009962689446543360000, 170149872975531014630262649651200000, 442695618409212548301531680485487369256960000000, 5620045472937667963281036681944526735620775198955929600000000
OFFSET
0,2
COMMENTS
In general, for k>2, if e.g.f. satisfies A(x) = Integral 1 + A(x)^k dx, then a(n) ~ k^(k/(k-1)) * n^(1/(k-1)) * (k*n)! * (k*sin(Pi/k)/Pi)^(k*n + k/(k-1)) / ((k-1)^(1/(k-1)) * Gamma(1/(k-1))).
LINKS
FORMULA
a(n) ~ 2^(24*n+48/7) * n^(1/7) * (sin(Pi/8)/Pi)^(8*n+8/7) * (8*n)! / (7^(1/7) * GAMMA(1/7)).
a(n) ~ 2^(16*n+40/7) * (2-sqrt(2))^(4*n+4/7) * n^(1/7) * (8*n)! / (7^(1/7) * GAMMA(1/7) * Pi^(8*n+8/7)).
PROG
(PARI) {a(n) = local(A=x); A = serreverse( intformal( 1/(1 + x^8 + O(x^(8*n+2))) ) ); (8*n+1)!*polcoeff(A, 8*n+1)}
for(n=0, 20, print1(a(n), ", ")) \\ after Paul D. Hanna
CROSSREFS
Cf. A258880 (k=3), A258901 (k=4), A258925 (k=5), A258927 (k=6), A259112 (k=7).
Sequence in context: A071550 A181724 A072269 * A195392 A172632 A255358
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 18 2015
STATUS
approved