The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259113 E.g.f. satisfies: A(x) = Integral 1 + A(x)^8 dx. 6
 1, 40320, 18598035456000, 474009962689446543360000, 170149872975531014630262649651200000, 442695618409212548301531680485487369256960000000, 5620045472937667963281036681944526735620775198955929600000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS In general, for k>2, if e.g.f. satisfies A(x) = Integral 1 + A(x)^k dx, then a(n) ~ k^(k/(k-1)) * n^(1/(k-1)) * (k*n)! * (k*sin(Pi/k)/Pi)^(k*n + k/(k-1)) / ((k-1)^(1/(k-1)) * Gamma(1/(k-1))). LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..56 FORMULA a(n) ~ 2^(24*n+48/7) * n^(1/7) * (sin(Pi/8)/Pi)^(8*n+8/7) * (8*n)! / (7^(1/7) * GAMMA(1/7)). a(n) ~ 2^(16*n+40/7) * (2-sqrt(2))^(4*n+4/7) * n^(1/7) * (8*n)! / (7^(1/7) * GAMMA(1/7) * Pi^(8*n+8/7)). PROG (PARI) {a(n) = local(A=x); A = serreverse( intformal( 1/(1 + x^8 + O(x^(8*n+2))) ) ); (8*n+1)!*polcoeff(A, 8*n+1)} for(n=0, 20, print1(a(n), ", ")) \\ after Paul D. Hanna CROSSREFS Cf. A258880 (k=3), A258901 (k=4), A258925 (k=5), A258927 (k=6), A259112 (k=7). Sequence in context: A071550 A181724 A072269 * A195392 A172632 A255358 Adjacent sequences:  A259110 A259111 A259112 * A259114 A259115 A259116 KEYWORD nonn AUTHOR Vaclav Kotesovec, Jun 18 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 16:53 EST 2021. Contains 349581 sequences. (Running on oeis4.)