The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259115 Number of unrooted binary ordered tanglegrams of size n. 3
 1, 1, 1, 2, 4, 31, 243, 3532, 62810, 1390718, 36080361, 1076477512, 36281518847, 1363869480379, 56587508558171, 2569141702825037, 126714642738385906, 6747643861563535720, 385875940575529343271, 23588199955061659841248, 1535037278334227258123709, 105961521687913311720698169 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Binary tanglegrams are pairs of bifurcating (degree 3 internal node) trees with a bijection between the leaves of the trees. Two tanglegrams are isomorphic if there is an isomorphism between the trees that preserves the bijection. Unrooted means that the tanglegram is composed of unrooted trees, and ordered means that the trees are considered as an ordered pair. LINKS Andrew Howroyd, Table of n, a(n) for n = 1..50 S. C. Billey, M. Konvalinka, and F. A. Matsen IV, On the enumeration of tanglegrams and tangled chains, arXiv:1507.04976 [math.CO], 2015. Ira M. Gessel, Counting tanglegrams with species, arXiv:1509.03867 [math.CO], (13-September-2015) F. A. Matsen IV, S. C. Billey, D. A. Kas, and M. Konvalinka, Tanglegrams: a reduction tool for mathematical phylogenetics, arXiv:1507.04784 [q-bio.PE], 2015. Frederick A. Matsen, Sage/GAP4 Code for generating tanglegrams PROG (PARI) \\ See links in A339645 for combinatorial species functions. rootedBinTrees(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, n, v[n]=(sum(j=1, n-1, v[j]*v[n-j]) + if(n%2, 0, sRaiseCI(v[n/2], n/2, 2)))/2); x*Ser(v)} cycleIndexSeries(n)={my(g=rootedBinTrees(n), u = g + (sRaise(g, 3) - g^3)/3); sCartProd(u, u)} NumUnlabeledObjsSeq(cycleIndexSeries(12)) \\ Andrew Howroyd, Dec 24 2020 CROSSREFS Cf. A258620 (tanglegrams), A259114, A259116, A258486 (tangled chains), A258487, A258488, A258489. Sequence in context: A220283 A339603 A188113 * A051569 A087186 A051759 Adjacent sequences:  A259112 A259113 A259114 * A259116 A259117 A259118 KEYWORD nonn AUTHOR Frederick A. Matsen IV, Jun 18 2015 EXTENSIONS More terms from Ira M. Gessel, Jul 19 2015 Terms a(15) and beyond from Andrew Howroyd, Dec 24 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 18:27 EDT 2022. Contains 354043 sequences. (Running on oeis4.)