login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258620
Number of tanglegrams of size n.
10
1, 1, 2, 13, 114, 1509, 25595, 535753, 13305590, 382728552, 12515198465, 458621603279, 18619063906689, 829607273337513, 40253392454978755, 2112878091130119496, 119296114546292088543, 7209829960147215492897, 464413707136960430809460, 31762965767675300603026848
OFFSET
1,3
REFERENCES
R. Page, Tangled trees: phylogeny, cospeciation, and coevolution, The University of Chicago Press, 2002.
LINKS
S. C. Billey, M. Konvalinka, and F. A. Matsen IV, On the enumeration of tanglegrams and tangled chains, arXiv:1507.04976 [math.CO], 2015.
Sara Billey, Matjaž Konvalinka, Frederick A. Matsen IV, On trees, tanglegrams, and tangled chains, hal-02173394 [math.CO], 2020.
M. Konvalinka, S. Wagner, The shape of random tanglegrams, arXiv preprint arXiv:1512.01168, 2015.
Dimbinaina Ralaivaosaona, Jean Bernoulli Ravelomanana, Stephan Wagner, Counting Planar Tanglegrams, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Article 32.
FORMULA
a(n) = Sum_{lambda binary partition of n} (Product_{i=2..l(lambda)} (2(lambda_i+...+lambda_l)-1)^2)/z_lambda.
a(n) ~ 2^(2*n-3/2) * n^(n-5/2) / (sqrt(Pi) * exp(n-1/8)).
MATHEMATICA
r[h_, n_, s_] :=
r[h, n, s] =
If[n == 0, 1,
Sum[Product[(2 (s + j 2^h) - 1)^2/(j 2^h), {j, m}] r[
h + 1, (n - m)/2, s + m 2^h], {m, n, 0, -2}]];
tang[n_] := r[0, n, 0]/(2 n - 1)^2;
CROSSREFS
Sequence in context: A127891 A110369 A212071 * A379285 A209174 A209718
KEYWORD
nonn
AUTHOR
Matjaz Konvalinka, Jun 18 2015
STATUS
approved