login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339645
Triangle read by rows: T(n,k) is the number of inequivalent colorings of lone-child-avoiding rooted trees with n colored leaves using exactly k colors.
45
1, 1, 1, 2, 3, 2, 5, 17, 12, 5, 12, 73, 95, 44, 12, 33, 369, 721, 512, 168, 33, 90, 1795, 5487, 5480, 2556, 625, 90, 261, 9192, 41945, 58990, 36711, 12306, 2342, 261, 766, 47324, 321951, 625088, 516952, 224241, 57155, 8702, 766, 2312, 249164, 2483192, 6593103, 7141755, 3965673, 1283624, 258887, 32313, 2312
OFFSET
1,4
COMMENTS
Only the leaves are colored. Equivalence is up to permutation of the colors.
Lone-child-avoiding rooted trees are also called planted series-reduced trees in some other sequences.
EXAMPLE
Triangle begins:
1;
1, 1;
2, 3, 2;
5, 17, 12, 5;
12, 73, 95, 44, 12;
33, 369, 721, 512, 168, 33;
90, 1795, 5487, 5480, 2556, 625, 90;
261, 9192, 41945, 58990, 36711, 12306, 2342, 261;
766, 47324, 321951, 625088, 516952, 224241, 57155, 8702, 766;
...
From Gus Wiseman, Jan 02 2021: (Start)
Non-isomorphic representatives of the 39 = 5 + 17 + 12 + 5 trees with four colored leaves:
(1111) (1112) (1123) (1234)
(1(111)) (1122) (1(123)) (1(234))
(11(11)) (1(112)) (11(23)) (12(34))
((11)(11)) (11(12)) (12(13)) ((12)(34))
(1(1(11))) (1(122)) (2(113)) (1(2(34)))
(11(22)) (23(11))
(12(11)) ((11)(23))
(12(12)) (1(1(23)))
(2(111)) ((12)(13))
((11)(12)) (1(2(13)))
(1(1(12))) (2(1(13)))
((11)(22)) (2(3(11)))
(1(1(22)))
(1(2(11)))
((12)(12))
(1(2(12)))
(2(1(11)))
(End)
PROG
(PARI) \\ See link above for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n )); x*Ser(v)}
{my(A=InequivalentColoringsTriangle(cycleIndexSeries(10))); for(n=1, #A~, print(A[n, 1..n]))}
CROSSREFS
The case with only one color is A000669.
Counting by nodes gives A318231.
A labeled version is A319376.
Row sums are A330470.
A000311 counts singleton-reduced phylogenetic trees.
A001678 counts unlabeled lone-child-avoiding rooted trees.
A005121 counts chains of set partitions, with maximal case A002846.
A005804 counts phylogenetic rooted trees with n labels.
A060356 counts labeled lone-child-avoiding rooted trees.
A141268 counts lone-child-avoiding rooted trees with leaves summing to n.
A291636 lists Matula-Goebel numbers of lone-child-avoiding rooted trees.
A316651 counts lone-child-avoiding rooted trees with normal leaves.
A316652 counts lone-child-avoiding rooted trees with strongly normal leaves.
A330465 counts inequivalent leaf-colorings of phylogenetic rooted trees.
Sequence in context: A350177 A162687 A010242 * A318956 A086507 A133568
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Dec 11 2020
STATUS
approved