|
|
A000669
|
|
Number of series-reduced planted trees with n leaves. Also the number of essentially series series-parallel networks with n edges; also the number of essentially parallel series-parallel networks with n edges.
(Formerly M1421 N0558)
|
|
144
|
|
|
1, 1, 2, 5, 12, 33, 90, 261, 766, 2312, 7068, 21965, 68954, 218751, 699534, 2253676, 7305788, 23816743, 78023602, 256738751, 848152864, 2811996972, 9353366564, 31204088381, 104384620070, 350064856815, 1176693361956, 3963752002320
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
A cograph is a simple graph which contains no path of length 3 as an induced subgraph. - Michael Somos, Apr 19 2014
Also called "hierarchies" by Genitrini (2016). - N. J. A. Sloane, Mar 24 2017
|
|
REFERENCES
|
N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 43.
A. Brandstaedt, V. B. Le and J. P. Spinrad, Graph Classes: A Survey, SIAM Publications, 1999. (For definition of cograph)
A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 3, p. 246.
D. E. Knuth, The Art of Computer Programming, 3rd ed. 1997, Vol. 1, p. 589, Answers to Exercises Section 2.3.4.4 5.
L. F. Meyers, Corrections and additions to Tree Representations in Linguistics. Report 3, 1966, p. 138. Project on Linguistic Analysis, Ohio State University Research Foundation, Columbus, Ohio.
L. F. Meyers and W. S.-Y. Wang, Tree Representations in Linguistics. Report 3, 1963, pp. 107-108. Project on Linguistic Analysis, Ohio State University Research Foundation, Columbus, Ohio.
J. Riordan and C. E. Shannon, The number of two-terminal series-parallel networks, J. Math. Phys., 21 (1942), 83-93 (the numbers called a_n in this paper). Reprinted in Claude Elwood Shannon: Collected Papers, edited by N. J. A. Sloane and A. D. Wyner, IEEE Press, NY, 1993, pp. 560-570.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Peter J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102; also in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018.
|
|
FORMULA
|
Product_{k>0} 1/(1-x^k)^a_k = 1+x+2*Sum_{k>1} a_k*x^k.
a(n) ~ c * d^n / n^(3/2), where d = 3.560839309538943329526129172709667..., c = 0.20638144460078903185013578707202765... . - Vaclav Kotesovec, Aug 25 2014
Consider a nontrivial partition p of n. For each size s of a part occurring in p, compute binomial(a(s)+m-1, m) where m is the multiplicity of s. Take the product of this expression over all s. Take the sum of this new expression over all p to obtain a(n). - Thomas Anton, Nov 22 2018
|
|
EXAMPLE
|
G.f. = x + x^2 + 2*x^3 + 5*x^4 + 12*x^5 + 33*x^6 + 90*x^7 + 261*x^8 + ...
a(4)=5 with the following series-reduced planted trees: (oooo), (oo(oo)), (o(ooo)), (o(o(oo))), ((oo)(oo)). - Michael Somos, Jul 25 2003
|
|
MAPLE
|
Method 1: a := [1, 1]; for n from 3 to 30 do L := series( mul( (1-x^k)^(-a[k]), k=1..n-1)/(1-x^n)^b, x, n+1); t1 := coeff(L, x, n); R := series( 1+2*add(a[k]*x^k, k=1..n-1)+2*b*x^n, x, n+1); t2 := coeff(R, x, n); t3 := solve(t1-t2, b); a := [op(a), t3]; od: A000669 := n-> a[n];
Method 2, more efficient: with(numtheory): M := 1001; a := array(0..M); p := array(0..M); a[1] := 1; a[2] := 1; a[3] := 2; p[1] := 1; p[2] := 3; p[3] := 7;
Method 2, cont.: for m from 4 to M do t1 := divisors(m); t3 := 0; for d in t1 minus {m} do t3 := t3+d*a[d]; od: t4 := p[m-1]+2*add(p[k]*a[m-k], k=1..m-2)+t3; a[m] := t4/m; p[m] := t3+t4; od: # A000669 := n-> a[n]; A058757 := n->p[n];
# Method 3:
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(binomial(a(i)+j-1, j)*
b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> `if`(n<2, n, b(n, n-1)):
|
|
MATHEMATICA
|
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i]+j-1, j]* b[n-i*j, i-1], {j, 0, n/i}]]];
a[n_] := If[n<2, n, b[n, n-1]];
|
|
PROG
|
(PARI) {a(n) = my(A, X); if( n<2, n>0, X = x + x * O(x^n); A = 1 / (1 - X); for(k=2, n, A /= (1 - X^k)^polcoeff(A, k)); polcoeff(A, n)/2)}; /* Michael Somos, Jul 25 2003 */
(Sage)
from collections import Counter
list = [1] + [0] * (n - 1)
for i in range(1, n):
for p in Partitions(i + 1, min_length=2):
m = Counter(p)
list[i] += prod(binomial(list[s - 1] + m[s] - 1, m[s]) for s in m)
return list
|
|
CROSSREFS
|
Cf. A000311, labeled hierarchies on n points.
|
|
KEYWORD
|
nonn,nice,easy,changed
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|