OFFSET
1,2
COMMENTS
Not all colors need to be used.
See table 2.3 in the Johnson reference.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275
Virginia Perkins Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. South Carolina, 2012.
EXAMPLE
Array begins:
==================================================================
n\k| 1 2 3 4 5 6 7
---+--------------------------------------------------------------
1 | 1 2 3 4 5 6 7 ...
2 | 1 3 6 10 15 21 28 ...
3 | 2 10 28 60 110 182 280 ...
4 | 5 40 156 430 965 1890 3360 ...
5 | 12 170 948 3396 9376 21798 44856 ...
6 | 33 785 6206 28818 97775 269675 642124 ...
7 | 90 3770 42504 256172 1068450 3496326 9632960 ...
8 | 261 18805 301548 2357138 12081605 46897359 149491104 ...
9 | 766 96180 2195100 22253672 140160650 645338444 2379859608 ...
...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Sep 17 2018
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j] b[n - i j, i - 1, k], {j, 0, n/i}]]];
A[n_, k_] := If[n < 2, n k, b[n, n - 1, k]];
Table[A[n, 1 + d - n], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Sep 11 2019, after Alois P. Heinz *)
PROG
(PARI) \\ here R(n, k) gives k'th column as a vector.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v}
{my(T=Mat(vector(8, k, R(8, k)~))); for(n=1, #T~, print(T[n, ]))} \\ Andrew Howroyd, Sep 15 2018
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Sep 15 2018
STATUS
approved