OFFSET
0,13
COMMENTS
From Vaclav Kotesovec, Feb 24 2015: (Start)
k Limit n->infinity A(n,k)^(1/n)
1 2.517540352632003890795354598463447277335981266803... = A246169
2 5.249032491228170579164952216184309265343086337648... = A246312
3 7.969494030514425004826375511986491746399264355846...
4 10.688492754969652458452048798468242930479212456958...
5 13.407087472537747579787047072702638639945914705837...
6 16.125529360448558670505097146631763969697822205298...
7 18.843901825822305757579605844910623225182677164912...
8 21.562238702430237066018783115405680041128676137631...
9 24.280555694806692616578932533497629224907619468796...
10 26.998860838916733933849490675388336975888308433826...
100 271.64425688361559470587959030374804709717287744789...
Conjecture: For big k the limit asymptotically approaches k*exp(1).
(End)
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened
EXAMPLE
A(3,2) = 5:
o o o o o
| | | | / \
1 1 2 2 1 2
| | | |
1 2 1 2
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 5, 12, 22, 35, 51, ...
0, 2, 18, 64, 156, 310, 542, ...
0, 3, 66, 363, 1193, 2980, 6273, ...
0, 6, 266, 2214, 9748, 30526, 77262, ...
MAPLE
with(numtheory):
A:= proc(n, k) option remember; `if`(n<2, n, add(A(n-j, k)*add(
k*A(d, k)*d*(-1)^(j/d+1), d=divisors(j)), j=1..n-1)/(n-1))
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
A[n_, k_] := A[n, k] = If[n<2, n, Sum[A[n-j, k]*Sum[k*A[d, k]*d*(-1)^(j/d + 1), {d, Divisors[j]}], {j, 1, n-1}]/(n-1)]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 24 2015
STATUS
approved