login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052797
Number of rooted identity trees with n nodes and 5-colored non-root nodes.
2
0, 1, 5, 35, 310, 2980, 30526, 325655, 3581200, 40301850, 461925625, 5373527605, 63281397830, 752962948360, 9038406399150, 109321688626100, 1331047556550240, 16300720361555725, 200658900798443135, 2481460407963908510, 30814094488256704650, 384069865485447909905
OFFSET
0,3
COMMENTS
Previous name was: A simple grammar.
LINKS
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 13.40708747253774757978704707270263863994591470583713..., c = 0.07868285364894808762720738672045999... . - Vaclav Kotesovec, Feb 24 2015
From Ilya Gutkovskiy, Apr 13 2019: (Start)
G.f. A(x) satisfies: A(x) = x*exp(5*Sum_{k>=1} (-1)^(k+1)*A(x^k)/k).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * Product_{n>=1} (1 + x^n)^(5*a(n)). (End)
MAPLE
spec := [S, {B=PowerSet(S), S=Prod(Z, B, B, B, B, B)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(5*a(i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> `if`(n=1, 1, b((n-1)$2)):
seq(a(n), n=0..25); # Alois P. Heinz, Feb 24 2015
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[5*a[i], j]*b[n - i*j, i-1], {j, 0, n/i}]]]; a[n_] := If[n==1, 1, b[n-1, n-1]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)
CROSSREFS
Column k=5 of A255517.
Sequence in context: A305964 A226739 A109253 * A371540 A225177 A151344
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
New name from Vaclav Kotesovec, Feb 24 2015
STATUS
approved