login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255520
Number of rooted identity trees with n nodes and 8-colored non-root nodes.
2
0, 1, 8, 92, 1304, 20198, 332520, 5703724, 100847976, 1824927697, 33634879304, 629201396744, 11915930584384, 228010216559592, 4401559021963488, 85616787777724400, 1676436841812675760, 33017479163392717192, 653643628799220208104, 12999812350464606307796
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 21.5622387024302370660187831154056800411286761376313324441779580180359..., c = 0.049440632575743414117260362085656158155861722... . - Vaclav Kotesovec, Feb 24 2015
From Ilya Gutkovskiy, Apr 14 2019: (Start)
G.f. A(x) satisfies: A(x) = x*exp(8*Sum_{k>=1} (-1)^(k+1)*A(x^k)/k).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * Product_{n>=1} (1 + x^n)^(8*a(n)). (End)
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n<2, n, -add(a(n-j)*add(
8*a(d)*d*(-1)^(j/d), d=divisors(j)), j=1..n-1)/(n-1))
end:
seq(a(n), n=0..30);
CROSSREFS
Column k=8 of A255517.
Sequence in context: A346768 A027395 A277307 * A305967 A113353 A081624
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 24 2015
STATUS
approved