Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Apr 14 2019 07:51:06
%S 0,1,8,92,1304,20198,332520,5703724,100847976,1824927697,33634879304,
%T 629201396744,11915930584384,228010216559592,4401559021963488,
%U 85616787777724400,1676436841812675760,33017479163392717192,653643628799220208104,12999812350464606307796
%N Number of rooted identity trees with n nodes and 8-colored non-root nodes.
%H Alois P. Heinz, <a href="/A255520/b255520.txt">Table of n, a(n) for n = 0..750</a>
%F a(n) ~ c * d^n / n^(3/2), where d = 21.5622387024302370660187831154056800411286761376313324441779580180359..., c = 0.049440632575743414117260362085656158155861722... . - _Vaclav Kotesovec_, Feb 24 2015
%F From _Ilya Gutkovskiy_, Apr 14 2019: (Start)
%F G.f. A(x) satisfies: A(x) = x*exp(8*Sum_{k>=1} (-1)^(k+1)*A(x^k)/k).
%F G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * Product_{n>=1} (1 + x^n)^(8*a(n)). (End)
%p with(numtheory):
%p a:= proc(n) option remember; `if`(n<2, n, -add(a(n-j)*add(
%p 8*a(d)*d*(-1)^(j/d), d=divisors(j)), j=1..n-1)/(n-1))
%p end:
%p seq(a(n), n=0..30);
%Y Column k=8 of A255517.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Feb 24 2015