login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255518
Number of rooted identity trees with n nodes and 6-colored non-root nodes.
2
0, 1, 6, 51, 542, 6273, 77262, 991264, 13109394, 177428496, 2445799878, 34218909015, 484668543660, 6935979521095, 100136840127534, 1456726481340477, 21332234689262126, 314211310198197978, 4652073871301311128, 69194159284034697860, 1033441834436615884266
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 16.1255293604485586705050971466317639696978222052989685416919877643317..., c = 0.065726585606326795496161701400246926800764944... . - Vaclav Kotesovec, Feb 24 2015
From Ilya Gutkovskiy, Apr 13 2019: (Start)
G.f. A(x) satisfies: A(x) = x*exp(6*Sum_{k>=1} (-1)^(k+1)*A(x^k)/k).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * Product_{n>=1} (1 + x^n)^(6*a(n)). (End)
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n<2, n, -add(a(n-j)*add(
6*a(d)*d*(-1)^(j/d), d=divisors(j)), j=1..n-1)/(n-1))
end:
seq(a(n), n=0..30);
CROSSREFS
Column k=6 of A255517.
Sequence in context: A027393 A346766 A305965 * A208250 A253097 A345259
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 24 2015
STATUS
approved