login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346766
a(n) = Sum_{k=0..n} Stirling2(n,k) * binomial(5*k,k) / (4*k + 1).
5
1, 1, 6, 51, 531, 6331, 83532, 1195452, 18316582, 297727712, 5099398853, 91554269703, 1715910362408, 33457504204403, 676778172939139, 14168046060375184, 306327815585165519, 6827996259530724139, 156654003923243040925, 3694188118839057258940, 89428870506038692255920
OFFSET
0,3
COMMENTS
Stirling transform of A002294.
FORMULA
G.f.: Sum_{k>=0} ( binomial(5*k,k) / (4*k + 1) ) * x^k / Product_{j=0..k} (1 - j*x).
MATHEMATICA
Table[Sum[StirlingS2[n, k] Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 20}]
nmax = 20; CoefficientList[Series[Sum[(Binomial[5 k, k]/(4 k + 1)) x^k/Product[1 - j x, {j, 0, k}], {k, 0, nmax}], {x, 0, nmax}], x]
nmax = 20; CoefficientList[Series[HypergeometricPFQ[{1/5, 2/5, 3/5, 4/5}, {1/2, 3/4, 1, 5/4}, 3125 (Exp[x] - 1)/256], {x, 0, nmax}], x] Range[0, nmax]!
PROG
(PARI) a(n) = sum(k=0, n, stirling(n, k, 2)*binomial(5*k, k)/(4*k + 1)); \\ Michel Marcus, Aug 03 2021
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 02 2021
STATUS
approved