login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277307
G.f. satisfies: A(x - 3*A(x)^2) = x - 2*A(x)^2.
13
1, 1, 8, 92, 1298, 20988, 375120, 7252065, 149534312, 3256987724, 74418884792, 1774657501252, 43995940957120, 1130453689908568, 30031716838365552, 823263454676130312, 23249951990747403528, 675517165191231019920, 20168579968950108809736, 618158189347428262782816, 19432224179107494743506272, 626034612821085407187912624
OFFSET
1,3
LINKS
FORMULA
G.f. A(x) also satisfies:
(1) A(x) = x + A( 3*A(x) - 2*x )^2.
(2) A(x) = 2*x/3 + 1/3 * Series_Reversion(x - 3*A(x)^2).
(3) R(x) = 3*x/2 - 1/2 * Series_Reversion(x - 2*A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x - R(x) ) ) = 3*x - 2*R(x), where R(A(x)) = x.
(5) A(x) = x + Sum_{n>=1} 3^(n-1) * d^(n-1)/dx^(n-1) A(x)^(2*n) / n!.
a(n) = Sum_{k=0..n-1} A277295(n,k) * 3^k.
EXAMPLE
G.f.: A(x) = x + x^2 + 8*x^3 + 92*x^4 + 1298*x^5 + 20988*x^6 + 375120*x^7 + 7252065*x^8 + 149534312*x^9 + 3256987724*x^10 +...
such that A(x - 3*A(x)^2) = x - 2*A(x)^2.
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 17*x^4 + 200*x^5 + 2844*x^6 + 46044*x^7 + 821448*x^8 + 15829010*x^9 + 325121270*x^10 + 7052584040*x^11 + 160492981648*x^12 + 3812351286940*x^13 + 94164503583424*x^14 + 2411159638210752*x^15 + 63849498902714289*x^16 +...
A(x - 3*A(x)^2) = x - 2*x^2 - 4*x^3 - 34*x^4 - 400*x^5 - 5688*x^6 - 92088*x^7 - 1642896*x^8 - 31658020*x^9 - 650242540*x^10 +...
which equals x - 2*A(x)^2.
Series_Reversion(x - 3*A(x)^2) = x + 3*x^2 + 24*x^3 + 276*x^4 + 3894*x^5 + 62964*x^6 + 1125360*x^7 + 21756195*x^8 + 448602936*x^9 + 9770963172*x^10 +...
which equals -2*x + 3*A(x).
A( 3*A(x) - 2*x ) = x + 4*x^2 + 38*x^3 + 497*x^4 + 7784*x^5 + 137538*x^6 + 2656584*x^7 + 55045728*x^8 + 1208709044*x^9 + 27891950516*x^10 +...
which equals sqrt( A(x) - x ).
PROG
(PARI) {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x-3*F^2) + 2*F^2, #A) ); A[n]}
for(n=1, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 09 2016
STATUS
approved