The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275765 G.f. satisfies: A(x - A(x)^2) = x + A(x)^2. 25
 1, 2, 12, 106, 1148, 14156, 191400, 2775930, 42585412, 684496988, 11449962008, 198331811356, 3543990791480, 65136985937096, 1228531761076208, 23733123786608826, 468887742020767788, 9461919438245032500, 194817077269127033944, 4089069139317823277548, 87426000975842460304792, 1902787414323673070857528, 42133267254272433484761584, 948695717599714654940068604, 21712101305047777916075831096, 504865916349551192319293625016 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Paul D. Hanna, Table of n, a(n) for n = 1..300 FORMULA G.f. A(x) also satisfies: (1) A(x) = x + 2 * A( x/2 + A(x)/2 )^2. (2) A(x) = -x + 2 * Series_Reversion(x - A(x)^2). (3) R(x) = -x + 2 * Series_Reversion(x + A(x)^2), where R(A(x)) = x. (4) R( sqrt( x/2 - R(x)/2 ) ) = x/2 + R(x)/2, where R(A(x)) = x. a(n) = Sum_{k=0..n-1} A277295(n,k)*2^(n-k). EXAMPLE G.f.: A(x) = x + 2*x^2 + 12*x^3 + 106*x^4 + 1148*x^5 + 14156*x^6 + 191400*x^7 + 2775930*x^8 + 42585412*x^9 + 684496988*x^10 + 11449962008*x^11 + 198331811356*x^12 +... such that A(x - A(x)^2) = x + A(x)^2. RELATED SERIES. Series_Reversion(x - A(x)^2) = x + x^2 + 6*x^3 + 53*x^4 + 574*x^5 + 7078*x^6 + 95700*x^7 + 1387965*x^8 + 21292706*x^9 + 342248494*x^10 +... which equals (A(x) + x)/2. A( (A(x) + x)/2 ) = x + 3*x^2 + 22*x^3 + 221*x^4 + 2634*x^5 + 35086*x^6 + 506356*x^7 + 7773279*x^8 + 125441594*x^9 + 2110832382*x^10 +... which equals sqrt( (A(x) - x)/2 ). Let R(x) = Series_Reversion(A(x)) so that R(A(x)) = x, R(x) = x - 2*x^2 - 4*x^3 - 26*x^4 - 228*x^5 - 2396*x^6 - 28440*x^7 - 369114*x^8 - 5135468*x^9 - 75602108*x^10 - 1167066216*x^11 - 18768202924*x^12 +... then Series_Reversion(x + A(x)^2) = x/2 + R(x)/2. MATHEMATICA m = 26; A[_] = 0; Do[A[x_] = x + 2 A[x/2 + A[x]/2]^2 + O[x]^(m+1) // Normal, {m+1}]; CoefficientList[A[x]/x, x] (* Jean-François Alcover, Sep 30 2019 *) PROG (PARI) {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x-F^2) - F^2, #A) ); A[n]} for(n=1, 30, print1(a(n), ", ")) CROSSREFS Cf. A277295, A213591, A276364, A276360, A276361, A276362, A276363. Sequence in context: A141133 A217801 A036077 * A184975 A268538 A319291 Adjacent sequences: A275762 A275763 A275764 * A275766 A275767 A275768 KEYWORD nonn AUTHOR Paul D. Hanna, Aug 31 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 08:52 EST 2023. Contains 367663 sequences. (Running on oeis4.)