The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275767 Numbers k for which 2*4^k - 27 is prime. 3
 2, 3, 9, 11, 291, 1263, 2661, 3165, 8973, 8999 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The prime numbers that these exponents generate are given in A275749. Since 2*4^(2k) - 27 = 2*16^k - 27 == (2*1^k - 27) mod 5 = -25 mod 5 == 0 mod 5, no even number greater than 2 will be in this sequence. a(8) > 5000. - Vincenzo Librandi, Aug 08 2016 LINKS D. Alpern, Factorization using the Elliptic Curve Method. EXAMPLE a(1) = 2, since 2*4^2 - 27 = 32 - 27 = 5, which is prime. a(2) = 3, since 2*4^3 - 27 = 128 - 27 = 101, which is prime. a(3) = 9, since 2*4^9 - 27 = 524288 - 27 = 524261, which is prime. a(4) = 11, since 2*4^11 - 27 = 8388608 - 27 = 8388581, which is prime. MATHEMATICA Select[Range[2, 1000], PrimeQ[2 4^# - 27] &] (* Vincenzo Librandi, Aug 08 2016 *) PROG (MAGMA) [n: n in [2..1000] |IsPrime(2*4^n-27)]; // Vincenzo Librandi, Aug 08 2016 (Python) from sympy import isprime def afind(limit, startk=2):     alst, pow4 = [], 4**startk     for k in range(startk, limit+1):         if isprime(2*pow4 - 27): print(k, end=", ")         pow4 *= 4 afind(1300) # Michael S. Branicky, Sep 22 2021 CROSSREFS Cf. A274519, A275749. Sequence in context: A214259 A287680 A242680 * A088086 A088084 A182203 Adjacent sequences:  A275764 A275765 A275766 * A275768 A275769 A275770 KEYWORD nonn,more,changed AUTHOR Timothy L. Tiffin, Aug 07 2016 EXTENSIONS a(6)-a(8) from Vincenzo Librandi, Aug 08 2016 a(9)-a(10) from Michael S. Branicky, Sep 22 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 03:11 EDT 2021. Contains 347651 sequences. (Running on oeis4.)