login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A242680
Numbers k dividing every cyclic permutation of k^3.
3
1, 2, 3, 9, 11, 41, 63, 77, 91, 99, 219, 303, 411, 999, 1353, 5291, 6363, 6993, 7777, 8547, 9009, 9191, 9901, 9999, 12561, 23661, 41841, 47027, 75609, 90243, 99999, 110011, 122859, 124533, 125341, 152207, 169983, 170017, 473211, 487179, 513513, 575757, 578369, 626373, 683527, 703703, 740259, 904761, 999001, 999999, 2463661, 2709729, 2754573
OFFSET
1,2
COMMENTS
Includes k if 10^(d-1) <= k^3 < 10^d and k | 10^d-1. Is 2 the only member of the sequence that is not of this form? - Robert Israel, Jun 04 2019
LINKS
EXAMPLE
41 is a term as the cyclic permutations of 41^3 = 68921 are {68921, 89216, 92168, 21689, 16892}
and
68921 = 41*1681;
89216 = 41*2176;
92168 = 41*2248;
21689 = 41*529;
16892 = 41*412.
MAPLE
filter:= proc(n) local d, t, r, i;
d:= ilog10(n^3);
t:= n^3;
for i from 1 to d do
r:= t mod 10;
t:= 10^d*r + (t-r)/10;
if not (t/n)::integer then return false fi;
od;
true
end proc:
select(filter, [$1..10^7]); # Robert Israel, Jun 04 2019
MATHEMATICA
Select[Range[300000], And@@Divisible[FromDigits/@Table[ RotateRight[ IntegerDigits[ #^3], n], {n, IntegerLength[#^3]}], #]&]
CROSSREFS
Cf. A178028.
Sequence in context: A214259 A287680 A377882 * A275767 A088086 A088084
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, May 20 2014
EXTENSIONS
More terms from Robert Israel, Jun 04 2019
STATUS
approved