login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275766
a(n) = (5^(2*(n + 1)) - 1)/4.
1
156, 3906, 97656, 2441406, 61035156, 1525878906, 38146972656, 953674316406, 23841857910156, 596046447753906, 14901161193847656, 372529029846191406, 9313225746154785156, 232830643653869628906, 5820766091346740722656, 145519152283668518066406
OFFSET
1,1
COMMENTS
It seems that these terms are the only numbers n such that n and n + 1 are in A053696.
FORMULA
a(n) = ((A125831(n+1))^3 - 1)/(A125831(n+1) - 1) - 1.
a(n) = A003463(2*(n+1)).
a(n) = 26*a(n-1) - 25*a(n-2), a(1) = 156, a(2) = 3906.
G.f.: 6*x*(26-25*x) / ((1-x)*(1-25*x)). - Colin Barker, Aug 24 2016
EXAMPLE
3906 written in base 5 is 111111 and 3907 written in base 62 is 111.
MATHEMATICA
Table[(5^(2 (n + 1)) - 1)/4, {n, 16}] (* or *)
Rest@ CoefficientList[Series[6 x (26 - 25 x)/((1 - x) (1 - 25 x)), {x, 0, 16}], x] (* Michael De Vlieger, Aug 28 2016 *)
PROG
(PARI) Vec(6*x*(26-25*x)/((1-x)*(1-25*x)) + O(x^20)) \\ Colin Barker, Aug 24 2016
(PARI) a(n) = 5^(2*n+2)\4 \\ Charles R Greathouse IV, Aug 28 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gionata Neri, Aug 07 2016
STATUS
approved