OFFSET
0,3
COMMENTS
Compare g.f. to:
(1) x = Sum_{n>=1} (n-1)! * x^n / Product_{k=1..n} (1 + k*x).
(2) x = Sum_{n>=1} n^(n-2) * x^n / (1 + n*x)^n.
(3) x = Sum_{n>=1} (n-1)!^2 * x^n / Product_{k=1..n} (1 + k^2*x).
(4) x = Sum_{n>=1} A082157(n-1) * x^n / (1 + n^2*x)^n.
EXAMPLE
G.f.: x = 1*x/(1+x) + 1*x^2/((1+2*1*x)*(1+2*2*x)) + 5*x^3/((1+3*1*x)*(1+3*2*x)*(1+3*3*x)) + 63*x^4/((1+4*1*x)*(1+4*2*x)*(1+4*3*x)*(1+4*4*x)) + 1514*x^5/((1+5*1*x)*(1+5*2*x)*(1+5*3*x)*(1+5*4*x)*(1+5*5*x)) + 59685*x^6/((1+6*1*x)*(1+6*2*x)*(1+6*3*x)*(1+6*4*x)*(1+6*5*x)*(1+6*6*x)) +...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = -Vec(sum(m=1, #A, A[m]*x^m/prod(k=1, m, (1 + m*k*x +x*O(x^#A) ) ) ) )[#A] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 18 2016
STATUS
approved