login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A082157 Number of deterministic completely defined acyclic automata with 2 inputs and n transient labeled states (and a unique absorbing state). 10
1, 1, 7, 142, 5941, 428856, 47885899, 7685040448, 1681740027657, 482368131521920, 175856855224091311, 79512800815739448576, 43701970591391787395197, 28714779850695689959247872 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
This is the first column of the array A082169.
LINKS
V. A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. Formal Power Series and Algebr. Combin. (FPSAC'03), 2003.
V. A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No.3 (2006), 537-551.
FORMULA
a(n) = a_2(n) where a_2(0) := 1, a_2(n) := sum(binomial(n, i)*(-1)^(n-i-1)*(i+1)^(2*n-2*i)*a_2(i), i=0..n-1), n>0.
1 = Sum_{n>=0} a(n)*exp(-(1+n)^2*x)*x^n/n!. - Vladeta Jovovic, Jul 18 2005
From Paul D. Hanna, Jun 04 2011: (Start)
1 = Sum_{n>=0} a(n)*x^n/(1 + (n+1)^2*x)^(n+1).
1 = Sum_{n>=0} a(n)*C(n+m-1,n)*x^n/(1 + (n+1)^2*x)^(n+m) for m>=1.
log(1+x) = Sum_{n>=1} a(n)*x^n/(1 + (n+1)^2*x)^n/n. (End)
EXAMPLE
a(2)=7 since the following transition diagrams represent all seven acyclic automata with two input letters x and y, two transient states 1 and 2, and the absorbing state 0:
1==x,y==>0==x,y==>0<==x,y==2, 1==x,y==>2==x,y==>0==x,y==>0,
the same with 1 and 2 interchanged,
1--x-->2==x,y==>0==x,y==>0
1--y-->0
and the last one with x and y and/or 1 and 2 interchanged.
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[-(-1)^(n-k)*Binomial[n, k]*(k+1)^(2*(n-k))*a[k], {k, 0, n-1}]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Dec 15 2014, translated from PARI *)
PROG
(PARI) {a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+(k+1)^2*x+x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna
(PARI) {a(n)=if(n==0, 1, sum(k=0, n-1, -(-1)^(n-k)*binomial(n, k)*(k+1)^(2*(n-k))*a(k)))}
CROSSREFS
Sequence in context: A322064 A179569 A342812 * A258176 A333088 A286398
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Apr 09 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 11:41 EST 2023. Contains 367656 sequences. (Running on oeis4.)