The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258176 Sum over all Dyck paths of semilength n of products over all peaks p of x_p^y_p, where x_p and y_p are the coordinates of peak p. 10
 1, 1, 7, 142, 9354, 2503597, 3260627607, 24105227716863, 1028836978599566213, 290383808553140390346475, 511963364817949502725911280781, 6704846980724405836568589845161191576, 584709361918378923208855262622537662297053728 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..45 Wikipedia, Lattice path MAPLE b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,       `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x^y, 1) +                    b(x-1, y+1, true)  ))     end: a:= n-> b(2*n, 0, false): seq(a(n), n=0..15); MATHEMATICA b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, x^y, 1] + b[x - 1, y + 1, True]]]; a[n_] :=  b[2*n, 0, False]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *) CROSSREFS Cf. A000108, A000698, A005411, A005412, A258172, A258173, A258174, A258175, A258177, A258178, A258179, A258180, A258181. Sequence in context: A322064 A179569 A082157 * A286398 A104240 A263599 Adjacent sequences:  A258173 A258174 A258175 * A258177 A258178 A258179 KEYWORD nonn AUTHOR Alois P. Heinz, May 22 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 01:03 EST 2020. Contains 332086 sequences. (Running on oeis4.)