The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258174 Sum over all Dyck paths of semilength n of products over all peaks p of x_p*y_p, where x_p and y_p are the coordinates of peak p. 10
 1, 1, 7, 84, 1486, 35753, 1111931, 43150593, 2035666985, 114412223081, 7538224510181, 574552299138202, 50096579094908148, 4949493445607316419, 549534510282406667069, 68071071679372210762156, 9347203754680124767253730, 1414740620049957735248175695 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..250 Wikipedia, Lattice path MAPLE b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0, `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x*y, 1) + b(x-1, y+1, true) )) end: a:= n-> b(2*n, 0, false): seq(a(n), n=0..20); MATHEMATICA b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, x*y, 1] + b[x - 1, y + 1, True]]]; a[n_] := b[2*n, 0, False]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *) CROSSREFS Cf. A000108, A000698, A005411, A005412, A258172, A258173, A258175, A258176, A258177, A258178, A258179, A258180, A258181. Sequence in context: A341966 A034323 A172455 * A254569 A183177 A058795 Adjacent sequences: A258171 A258172 A258173 * A258175 A258176 A258177 KEYWORD nonn AUTHOR Alois P. Heinz, May 22 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 23 16:58 EDT 2023. Contains 361449 sequences. (Running on oeis4.)