|
|
A258180
|
|
Sum over all Dyck paths of semilength n of products over all peaks p of C(x_p,y_p), where x_p and y_p are the coordinates of peak p.
|
|
10
|
|
|
1, 1, 4, 33, 517, 15326, 852912, 91023697, 19716262702, 8794395041567, 8016790849841585, 15556074485786226848, 64891787190080888991273, 561815453349204340865790817, 10402242033224422585780623039909, 423787530114579490372987256671625678
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.
|
|
LINKS
|
|
|
MAPLE
|
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, binomial(x, y), 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..20);
|
|
MATHEMATICA
|
b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, Binomial[x, y], 1] + b[x - 1, y + 1, True]]];
a[n_] := b[2*n, 0, False];
|
|
CROSSREFS
|
Cf. A000108, A000698, A005411, A005412, A258172, A258173, A258174, A258175, A258176, A258177, A258178, A258179, A258181.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|