login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258180 Sum over all Dyck paths of semilength n of products over all peaks p of C(x_p,y_p), where x_p and y_p are the coordinates of peak p. 10
1, 1, 4, 33, 517, 15326, 852912, 91023697, 19716262702, 8794395041567, 8016790849841585, 15556074485786226848, 64891787190080888991273, 561815453349204340865790817, 10402242033224422585780623039909, 423787530114579490372987256671625678 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..75

Wikipedia, Lattice path

MAPLE

b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,

      `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, binomial(x, y), 1) +

                   b(x-1, y+1, true)  ))

    end:

a:= n-> b(2*n, 0, false):

seq(a(n), n=0..20);

MATHEMATICA

b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, Binomial[x, y], 1] + b[x - 1, y + 1, True]]];

a[n_] := b[2*n, 0, False];

Table[a[n], {n, 0, 20}] (* Jean-Fran├žois Alcover, Apr 23 2016, translated from Maple *)

CROSSREFS

Cf. A000108, A000698, A005411, A005412, A258172, A258173, A258174, A258175, A258176, A258177, A258178, A258179, A258181.

Sequence in context: A101981 A002018 A219504 * A072754 A225609 A113086

Adjacent sequences:  A258177 A258178 A258179 * A258181 A258182 A258183

KEYWORD

nonn

AUTHOR

Alois P. Heinz, May 22 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 12 22:46 EDT 2020. Contains 335669 sequences. (Running on oeis4.)