login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219504
E.g.f.: Sum_{n>=0} a(n) * (cos(n*x)-sin(n*x)) * x^n/n! = 1/(1-x).
4
1, 1, 4, 33, 512, 13005, 494976, 26383917, 1876721664, 171728626617, 19650536857600, 2749029193911033, 461590186944847872, 91611982632843733125, 21215197576393952452608, 5669317752667727770720965, 1731566894935958076783067136, 599421136964093700021081229041
OFFSET
0,3
COMMENTS
Compare to the LambertW identity: Sum_{n>=0} n^n * exp(-n*x) * x^n/n! = 1/(1-x).
Limit a(n)/A218798(n) = 2.30118311046652539351786883792086321360311554689487793288...
LINKS
FORMULA
a(n) = n! + Sum_{k=1..n-1} (-1)^floor((n-k-1)/2) * binomial(n,k) * k^(n-k) * a(k) for n>1 with a(0)=a(1)=1.
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 33*x^3/3! + 512*x^4/4! + 13005*x^5/5! +...
By definition, the coefficients a(n) satisfy:
1/(1-x) = 1 + 1*(cos(x)-sin(x))*x + 4*(cos(2*x)-sin(2*x))*x^2/2! + 33*(cos(3*x)-sin(3*x))*x^3/3! + 512*(cos(4*x)-sin(4*x))*x^4/4! + 13005*(cos(5*x)-sin(5*x))*x^5/5! +...+ a(n)*(cos(n*x)-sin(n*x))*x^n/n! +...
MATHEMATICA
a[0] := 1; a[1] := 1; a[n_] := n! + Sum[(-1)^(Floor[(n -k-1)/2]) *Binomial[n, k]*k^(n - k)*a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Nov 18 2017 *)
PROG
(PARI) {a(n)=local(A=[1], N); for(i=1, n, A=concat(A, 0); N=#A; A[N]=(N-1)!*(1-Vec(sum(m=0, N-1, A[m+1]*x^m/m!*(cos(m*x+x*O(x^N))-sin(m*x+x*O(x^N)))))[N])); A[n+1]}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n)=if(n==0|n==1, 1, n!+sum(k=1, n-1, (-1)^((n-k-1)\2)*a(k)*binomial(n, k)*k^(n-k)))}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A218798.
Sequence in context: A101981 A002018 A368837 * A258180 A072754 A225609
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 21 2012
STATUS
approved