The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A219507 Pierce expansion of (5 - sqrt(21))/2. 2
 4, 6, 109, 111, 1330669, 1330671, 2356194280407770989, 2356194280407770991, 13080769480548649962914459850235688797656360638877986029, 13080769480548649962914459850235688797656360638877986031 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS For x in the open interval (0,1) define the map f(x) = 1 - x*floor(1/x). The n-th term (n >= 0) in the Pierce expansion of x is given by floor(1/f^(n)(x)), where f^(n)(x) denotes the n-th iterate of the map f, with the convention that f^(0)(x) = x. The present sequence is the case x = 1/2*(5 - sqrt(21)). Jeffrey Shallit has shown that the Pierce expansion of the quadratic irrational (c - sqrt(c^2 - 4))/2 has the form [c(0) - 1, c(0) + 1, c(1) - 1, c(1) + 1, c(2) - 1, c(2) + 1, ...], where c(0) = c and c(n+1) = c(n)^3 - 3*c(n). This is the case c = 5. For other cases see A006276 (c = 3), A219506 (c = 4) and A006275 (essentially c = 6 apart from the initial term). The Pierce expansion of {(c - sqrt(c^2 - 4))/2}^(3^n) is [[c(n) - 1, c(n) + 1, c(n+1) - 1, c(n+1) + 1, c(n+2) - 1,c(n+2) + 1, ...]. LINKS G. C. Greubel, Table of n, a(n) for n = 0..13 T. A. Pierce, On an algorithm and its use in approximating roots of algebraic equations, Amer. Math. Monthly, Vol. 36 No. 10, (1929) p.523-525. Jeffrey Shallit, Some predictable Pierce expansions, Fib. Quart., 22 (1984), 332-335. E. W. Weisstein, MathWorld: Pierce Expansion FORMULA a(2*n) = (1/2*(5 + sqrt(21)))^(3^n) + (1/2*(5 - sqrt(21)))^(3^n) - 1. a(2*n+1) = (1/2*(5 + sqrt(21)))^(3^n) + (1/2*(5 - sqrt(21)))^(3^n) + 1. EXAMPLE Let x = 1/2*(5 - sqrt(21)). We have the alternating series expansions x = 1/4 - 1/(4*6) + 1/(4*6*109) - 1/(4*6*109*111) + ... x^3 = 1/109 - 1/(109*111) + 1/(109*111*1330669) - ... x^9 = 1/1330669 - 1/(1330669*1330671) + .... MATHEMATICA PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[(5 - Sqrt[21])/2 , 7!], 10] (* G. C. Greubel, Nov 14 2016 *) CROSSREFS Cf. A006275, A006276, A219160, A219506, A219508. Sequence in context: A139730 A013023 A012909 * A012934 A013165 A337466 Adjacent sequences: A219504 A219505 A219506 * A219508 A219509 A219510 KEYWORD nonn,easy AUTHOR Peter Bala, Nov 22 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 18:25 EST 2022. Contains 358539 sequences. (Running on oeis4.)