login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219506
Pierce expansion of 2 - sqrt(3).
2
3, 5, 51, 53, 140451, 140453, 2770663499604051, 2770663499604053, 21269209556953516583554114034636483645584976451, 21269209556953516583554114034636483645584976453
OFFSET
0,1
COMMENTS
For x in the open interval (0,1) define the map f(x) = 1 - x*floor(1/x). The n-th term (n >= 0) in the Pierce expansion of x is given by floor(1/f^(n)(x)), where f^(n)(x) denotes the n-th iterate of the map f, with the convention that f^(0)(x) = x.
The present sequence is the case x = 2 - sqrt(3).
Shallit has shown that the Pierce expansion of the quadratic irrational (c - sqrt(c^2 - 4))/2 has the form [c(0) - 1, c(0) + 1, c(1) - 1, c(1) + 1, c(2) - 1, c(2) + 1, ...], where c(0) = c and c(n+1) = c(n)^3 - 3*c(n). This is the case c = 4. For other cases see A006276 (c = 3), A219507 (c = 5) and A006275 (essentially c = 6 apart from the initial term).
The Pierce expansion of {(c - sqrt(c^2 - 4))/2}^(3^n) is [[c(n) - 1, c(n) + 1, c(n+1) - 1, c(n+1) + 1, c(n+2) - 1,c(n+2) + 1, ...].
LINKS
F. L. Bauer, Letters to the editor: An Infinite Product for Square-Rooting with Cubic Convergence, The Mathematical Intelligencer, Vol. 20, Issue 1, (1998), 12-14.
T. A. Pierce, On an algorithm and its use in approximating roots of algebraic equations, Amer. Math. Monthly, Vol. 36 No. 10, (1929) p.523-525.
Jeffrey Shallit, Some predictable Pierce expansions, Fib. Quart., 22 (1984), 332-335.
Eric Weisstein's World of Mathematics, Pierce Expansion
FORMULA
a(2*n) = (2 + sqrt(3))^(3^n) + (2 - sqrt(3))^(3^n) - 1.
a(2*n + 1) = (2 + sqrt(3))^(3^n) + (2 - sqrt(3))^(3^n) + 1.
From Peter Bala, Jan 18 2022: (Start)
a(2*n+2) = a(2*n)^3 + 3*a(2*n)^2 - 3; a(2*n+1) = a(2*n-1)^3 - 3*a(2*n-1)^2 + 3.
a(2*n) = 6*(Product_{k = 1..n-1} a(2*k))^2 - 3, with a(0) = 1;
a(2*n+1) = 2*(Product_{k = 0..n-1} a(2*k+1))^2 + 3, with a(1) = 5.
sqrt(3) = (1 + 2/3)*(1 + 2/51)*(1 + 2/140451)*(1 + 2/2770663499604051)* .... See Bauer.
1/sqrt(3) = (1 - 2/5)*(1 - 2/53)*(1 - 2/140453)*(1 - 2/2770663499604053)* .... (End)
EXAMPLE
We have the alternating series expansions
2 - sqrt(3) = 1/3 - 1/(3*5) + 1/(3*5*51) - 1/(3*5*51*53) + ...
(2 - sqrt(3))^3 = 1/51 - 1/(51*53) + 1/(51*53*140451) - ...
(2 - sqrt(3))^9 = 1/140451 - 1/(140451*140453) + ....
MATHEMATICA
PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[2 - Sqrt[3] , 7!], 10] (* G. C. Greubel, Nov 14 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Nov 22 2012
STATUS
approved