login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371688
Triangle read by rows: T(n, k) = (2*n + 1)! * [y^(2*k)] [x^(2*n+1)] arctan(sec(x*y)*sinh(x)).
1
1, -1, 3, 5, -50, 25, -61, 1281, -2135, 427, 1385, -49860, 174510, -116340, 12465, -50521, 2778655, -16671930, 23340702, -8335965, 555731, 2702765, -210815670, 1932476975, -4637944740, 3478458555, -772990790, 35135945
OFFSET
0,3
COMMENTS
Expansion of the exponential generating function arctan(sec(x*y)*sinh(x)), nonzero terms only.
FORMULA
T(n, k) = (-1)^k*binomial(2*n + 1, 2*k)*Euler(2*n). - Detlef Meya, Apr 07 2024
EXAMPLE
Triangle starts:
[0] 1;
[1] -1, 3;
[2] 5, -50, 25;
[3] -61, 1281, -2135, 427;
[4] 1385, -49860, 174510, -116340, 12465;
[5] -50521, 2778655, -16671930, 23340702, -8335965, 555731;
MAPLE
egf := arctan(sec(x*y)*sinh(x)):
serx := simplify(series(egf, x, 26)): coeffx := n -> n!*coeff(serx, x, n):
seq(lprint(seq(coeff(coeffx(2*n + 1), y, 2*k), k = 0..n)), n = 0..7);
MATHEMATICA
T[n_, k_]:=(-1)^k*Binomial[2*n+1, 2*k]*EulerE[2*n]; Flatten[Table[T[n, k], {n, 0, 6}, {k, 0, n}]] (* Detlef Meya, Apr 07 2024 *)
CROSSREFS
Cf. A000364 (column 0), A009843 (main diagonal), A012816 (row sums), A002436 (alternating row sums).
Sequence in context: A120426 A077201 A196467 * A219506 A171775 A260227
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Apr 03 2024
STATUS
approved