login
A371687
Triangle read by rows: T(n, k) = (-1)^(n-k) * (2*n + 1)! * [y^(2*k)] [x^(2*n+1)] arctan(sec(x*y)*tanh(x)).
0
1, 4, 3, 80, 80, 25, 3904, 5376, 2660, 427, 354560, 626688, 433440, 131712, 12465, 51733504, 111738880, 99242880, 43804992, 9021540, 555731, 11070525440, 28258074624, 30647302400, 17666508288, 5509286640, 816337808, 35135945
OFFSET
0,2
COMMENTS
Expansion of the exponential generating function arctan(sec(x*y)*tanh(x)), nonzero terms only.
EXAMPLE
Triangle starts:
[0] 1;
[1] 4, 3;
[2] 80, 80, 25;
[3] 3904, 5376, 2660, 427;
[4] 354560, 626688, 433440, 131712, 12465;
[5] 51733504, 111738880, 99242880, 43804992, 9021540, 555731;
MAPLE
egf := arctan(sec(x*y)*tanh(x)):
serx := simplify(series(egf, x, 26)): coeffx := n -> n!*coeff(serx, x, n):
seq(print(seq((-1)^(n-k)*coeff(coeffx(2*n+1), y, 2*k), k = 0..n)), n = 0..6);
CROSSREFS
Cf. A002436 (column 0), A009843 (main diagonal), A012798 (row sums), A012835 (alternating row sums).
Cf. A371688.
Sequence in context: A298314 A299389 A220556 * A299188 A300026 A349589
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 03 2024
STATUS
approved