login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371687
Triangle read by rows: T(n, k) = (-1)^(n-k) * (2*n + 1)! * [y^(2*k)] [x^(2*n+1)] arctan(sec(x*y)*tanh(x)).
0
1, 4, 3, 80, 80, 25, 3904, 5376, 2660, 427, 354560, 626688, 433440, 131712, 12465, 51733504, 111738880, 99242880, 43804992, 9021540, 555731, 11070525440, 28258074624, 30647302400, 17666508288, 5509286640, 816337808, 35135945
OFFSET
0,2
COMMENTS
Expansion of the exponential generating function arctan(sec(x*y)*tanh(x)), nonzero terms only.
EXAMPLE
Triangle starts:
[0] 1;
[1] 4, 3;
[2] 80, 80, 25;
[3] 3904, 5376, 2660, 427;
[4] 354560, 626688, 433440, 131712, 12465;
[5] 51733504, 111738880, 99242880, 43804992, 9021540, 555731;
MAPLE
egf := arctan(sec(x*y)*tanh(x)):
serx := simplify(series(egf, x, 26)): coeffx := n -> n!*coeff(serx, x, n):
seq(print(seq((-1)^(n-k)*coeff(coeffx(2*n+1), y, 2*k), k = 0..n)), n = 0..6);
CROSSREFS
Cf. A002436 (column 0), A009843 (main diagonal), A012798 (row sums), A012835 (alternating row sums).
Cf. A371688.
Sequence in context: A298314 A299389 A220556 * A299188 A300026 A349589
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 03 2024
STATUS
approved