

A220556


Table T(n,k) = ((n+k1)*(n+k2)/2+n)^k, n,k >0 read by antidiagonals.


1



1, 4, 3, 64, 25, 6, 2401, 512, 81, 10, 161051, 20736, 2197, 196, 15, 16777216, 1419857, 104976, 6859, 400, 21, 2494357888, 148035889, 7962624, 390625, 17576, 729, 28, 500246412961, 21870000000, 887503681, 33554432, 1185921, 39304, 1225, 36
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Column number k of the table T(n,k) is formula for Cantor antidiagonal order in power k


LINKS

Boris Putievskiy, Table of n, Rows n = 1 to 30 of triangle, flattened
Boris Putievskiy, Transformations Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO]


FORMULA

As a linear array, the sequence is a(n) = n^A004763 or a(n) = n^((t*t+3*t+4)/2  n), where t=floor[(1+sqrt(8*n7))/2].


EXAMPLE

The start of the sequence as triangle array is:
1;
4,3;
64,25,6;
2401,512,91,10;
161051,20736,2197,196,15;
. . .


PROG

(Python)
t=int((math.sqrt(8*n7)  1)/ 2)
m=n**((t*t+3*t+4)/2n)


CROSSREFS

Cf. A004736.
Sequence in context: A013335 A298314 A299389 * A299188 A300026 A266255
Adjacent sequences: A220553 A220554 A220555 * A220557 A220558 A220559


KEYWORD

nonn,tabl


AUTHOR

Boris Putievskiy, Dec 16 2012


STATUS

approved



