OFFSET
0,2
REFERENCES
A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 75.
J. W. L. Glaisher, On the last two figures in certain coefficients analogous to the Eulerian numbers, Quart. J. Pure Appl. Math., 44 (1913), 105-112.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..216
FORMULA
a(n) = A000831(2*n) = 4^n * A000364(n). a(n) = 2 * A000816(n) except n=0. - Michael Somos, Apr 26 2011
E.g.f.: sec(2*x) = 1 + 2*(x^2)/G(0); G(k) = (k+1)*(2*k+1) - 2*(x^2) + (x^2)*(2*k+1)*(2*k+2)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Dec 01 2011
E.g.f.: sec(2*x) = 1/cos(2*x) = 1/(cos(x)^2 - sin(x)^2). - Arkadiusz Wesolowski, Jul 25 2012
From Sergei N. Gladkovskii, Oct 23 2012 (Start)
G.f.: 1/U(0) where U(k) = 1 - 2*(4*k+1)*(4*k+2)*x/( 1 - 2*(4*k+3)*(4*k+4)*x/U(k+1)); (continued fraction, 2-step).
E.g.f.: 1/S(0) where S(k) = 1 - 2*x^2/((4*k+1)*(2*k+1) - x^2*(4*k+1)*(2*k+1)/(x^2 - (4*k+3)*(k+1)/S(k+1); (continued fraction, 3rd kind, 3-step). (End)
G.f.: 1/U(0) where U(k,x) = 1 - (4*k+2)*(4*k+2)*x^2/(1 - (4*k+4)*(4*k+4)*x^2/U(k+1); (continued fraction, 2-step). - Sergei N. Gladkovskii, Nov 06 2012
G.f.: 1/G(0) where G(k) = 1 - 4*x*(k+1)^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 12 2013
a(n+1) = | 2*16^n*lerchphi(-1, -2*n, 1/2) |, n>=0. - Peter Luschny, Apr 27 2013
G.f.: Q(0), where Q(k) = 1 - x*(2*k+2)^2/( x*(2*k+2)^2 - 1/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 10 2013
E.g.f.: sec(2*x) = 1/cos(2*x) = 1 + 2*x^2/(1-2*x^2)*T(0), where T(k) = 1 - x^2*(2*k+1)*(2*k+2)/( x^2*(2*k+1)*(2*k+2) + ((k+1)*(2*k+1) - 2*x^2)*((k+2)*(2*k+3) - 2*x^2)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 25 2013
a(n) = (-1)^n*2^(6*n+1)*(Zeta(-2*n,1/4) - Zeta(-2*n, 3/4)), where Zeta(a, z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015
EXAMPLE
G.f. = 1 + 4*x + 80*x^2 + 3904*x^3 + 354560*x^4 + 51733504*x^5 + 11070525440*x^6 + ...
MAPLE
A := n -> (-4)^n*euler(2*n); # (Then A(n) = a(n+1) for n >= 0.) # Peter Luschny, Jan 27 2009
MATHEMATICA
Rest@ Union[ Range[0, 24]! CoefficientList[ Series[ Sec[ 2x], {x, 0, 24}], x]] (* Robert G. Wilson v, Apr 16 2011 *)
a[ n_] := If[ n < 0, 0, 2 (-16)^n LerchPhi[ -1, -2 n, 1/2]]; (* Michael Somos, Oct 14 2014 *)
With[{nn=30}, Take[CoefficientList[Series[Sec[2x], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, May 06 2018 *)
PROG
(PARI) {a(n) = local(m); if( n<0, 0, m = 2*n; m! * polcoeff( 1 / cos( 2*x + x * O(x^m)), m))}; /* Michael Somos, Apr 16 2011 */
(Sage)
@CachedFunction
def sp(n, x) :
if n == 0 : return 1
return -add(2^(n-k)*sp(k, 1/2)*binomial(n, k) for k in range(n)[::2])
A002436 = lambda n : abs(sp(2*(n-1), x))
[A002436(n) for n in (1..15)] # Peter Luschny, Jul 30 2012
(Magma) m:=35; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (1+Tan(x))/(1-Tan(x)) )); [Factorial(n-1)*b[n]: n in [1..m by 2]]; // Vincenzo Librandi, May 30 2019
CROSSREFS
(-1)^n*a(n) give the alternating row sums of A060187(2*n), n >= 0. The alternating sums for odd numbered rows vanish. - Wolfdieter Lang, Jul 12 2017
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
More terms from Michael Somos, Jun 21 2002
STATUS
approved