The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002439 Glaisher's T numbers. (Formerly M5138 N2228) 31
 1, 23, 1681, 257543, 67637281, 27138236663, 15442193173681, 11828536957233383, 11735529528739490881, 14639678925928297567703, 22427641105413135505628881, 41393949926819051111431239623, 90592214447886493688036507587681, 231969423543894989257690172433129143 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Kashaev’s invariant for the (3,2)-torus knot. See Hikami 2003. For other Kashaev invariants see A208679, A208680, and A208681. - Peter Bala, Mar 01 2012 From Peter Bala, Dec 18 2021: (Start) Glaisher's T numbers occur in the evaluation of the L-function L(X_12,s) := Sum_{k >= 1} X_12(k)/k^s for positive even values of s, where X_12(n) = A110161(n) is a nonprincipal Dirichlet character mod 12: the result is L(X_12,2*n+2) = a(n)/(6*sqrt(3)*36^n*(2*n+1)!) * Pi^(2*n+2). We make the following conjectures: 1) Taking the sequence modulo an integer k gives an eventually periodic sequence with period dividing phi(k). For example, the sequence taken modulo 50 begins [1, 23, 31, 43, 31, 13, 31, 33, 31, 3, 31, 23, 31, 43, 31, 13, 31, 33, 31, 3, 31, 23, ...] and appears to have a pre-period of length 1 and a period of length 10 = (1/2)*phi(50). 2) Let i >= 0 and define a_i(n) = a(n+i). Then for each i the Gauss congruences a_i(n*p^k) == a_i(n*p^(k-1)) ( mod p^k ) hold for all prime p and positive integers n and k. If true, then for each i the expansion of exp( Sum_{n >= 1} a_i(n)*x^n/n ) has integer coefficients. 3)(i) a(m*n) == a(m)^n (mod 2^k) for k = 2*v_2(m) + 7, where v_p(i) denotes the p-adic valuation of i. (ii) a(m*n) == a(m)^n (mod 3^k) for k = 2*v_3(m) + 2. 4)(i) a(2*m*n) == a(n)^(2*m) (mod 2^k) for k = v_2(m) + 7 (ii) a((2*m+1)*n) == a(n)^(2*m+1) (mod 2^k) for k = v_2(m) + 7. 5)(i) a(3*m*n) == a(n)^(3*m) (mod 3^k) for k = v_3(m) + 2 (ii) a((3*m+1)*n) == a(n)^(3*m+1) (mod 3^k) for k = v_3(m) + 2 (iii) a((3*m+2)*n) == a(n)^(3*m+2) (mod 3^2). 6) For prime p >= 5, a((p-1)/2*n*m) == a((p-1)/2*n)^m (mod p^k) for k = v_p(m-1) + 1. (End) REFERENCES A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 76. J. W. L. Glaisher, Messenger of Math., 28 (1898), 36-79, see esp. p. 76. J. W. L. Glaisher, On the Bernoullian function, Q. J. Pure Appl. Math., 29 (1898), 1-168. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n=0..100 G. E. Andrews, J. Jimenez-Urroz and K. Ono, q-series identities and values of certain L-functions, Duke Math J., Volume 108, No.3 (2001), 395-419. J. Bryson, K. Ono, S. Pitman and R. C. Rhoades, Unimodal Sequences and Quantum and Mock Modular Forms, P. 2. Frank Garvan, Congruences and relations for r-Fishburn numbers, arXiv:1406.5611 [math.NT], 2014. J. W. L. Glaisher, On a set of coefficients analogous to the Eulerian numbers, Proc. London Math. Soc., 31 (1899), 216-235. K. Hikami, Volume Conjecture and Asymptotic Expansion of q-Series, Experimental Mathematics Vol. 12, Issue 3 (2003). Michael E. Hoffman, Derivative Polynomials, Euler Polynomials, and Associated Integer Sequences, The Electronic Journal of Combinatorics, Volume 6.1 (1999): Research paper R21, 13 p. Hsien-Kuei Hwang and Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019. J. C. P. Miller, Letter to N. J. A. Sloane, Mar 26 1971 Hjalmar Rosengren, Elliptic pfaffians and solvable lattice models, arXiv preprint arXiv:1605.02915 [math-ph], 2016. A. Vieru, Agoh's conjecture: its proof, its generalizations, its analogues, arXiv preprint arXiv:1107.2938 [math.NT], 2011. Don Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology, vol.40, pp.945-960 (2001). FORMULA Q_{2n+1)(sqrt(3))/sqrt(3), where the polynomials Q_n() are defined in A104035. - N. J. A. Sloane, Nov 06 2009 E.g.f.: sin(2*x)/(2*cos(3*x)) = Sum a(n)*x^(2*n+1)/(2*n+1)!. With offset 1 instead of 0: a(1)=1, a(n)=(-4)^(n-1) - Sum_{k=1..n} (-9)^k*C(2*n-1, 2*k)*a(n-k). a(n) = -(-4)^n*3^(2n+1)*E_{2n+1}(1/6), where E is an Euler polynomial. - Bill Gosper, Aug 08 2001, corrected Oct 12 2015. From Peter Bala, Mar 24 2009: (Start) Basic hypergeometric generating function: exp(-t)*Sum {n = 0..inf} Product {k = 1..n} (1-exp(-24*k*t)) = 1 + 23*t + 1681*t^2/2! + .... For other sequences with generating functions of a similar type see A000364, A000464, A002105, A079144, A158690. a(n) = (1/2)*(-1)^(n+1)*L(-2*n-1), where L(s) is a Dirichlet L-function for a Dirichlet character with modulus 12: L(s) = 1 - 1/5^s - 1/7^s + 1/11^s + - - + .... See the Andrew's link. (End) From Peter Bala, Jan 21 2011: (Start) Let I = sqrt(-1) and w = exp(2*Pi*I/6). Then a(n) = I/sqrt(3) *sum {k = 0..2*n+2} w^(n-k) *sum {j = 1..2*n+2} (-1)^(k-j) *binomial(2*n+2,k-j) *(2*j-1)^(2*n+1). This formula can be used to obtain congruences for a(n). For example, for odd prime p we find a(p-1) = 1 (mod p) and a((p-1)/2) = (-1)^((p-1)/2) (mod p). Cf. A002437 and A182825. (End) a(n) = (-1)^n/(4*n+4)*12^(2*n+1)*sum {k = 1..12} X(k)*B(2*n+2,k/12), where B(n,x) is a Bernoulli polynomial and X(n) is a periodic function modulo 12 given by X(n) = 0 except for X(12*n+1) = X(12*n+11) = 1 and X(12*n+5) = X(12*n+7) = -1. - Peter Bala, Mar 01 2012 a(n) ~ n^(2*n+3/2) * 2^(4*n+3) * 3^(2*n+3/2) / (exp(2*n) * Pi^(2*n+3/2)). - Vaclav Kotesovec, Mar 01 2014 From Peter Bala, May 11 2017: (Start) Let X = 24*x. G.f. A(x) = 1/(1 + x - X/(1 - 2*X/(1 + x - 5*X/(1 - 7*X/(1 + x - 12*X/(1 - ...)))))) = 1 + 23*x + 1681*x^2 + ..., where the sequence [1, 2, 5, 7, 12, ...] of unsigned coefficients in the partial numerators of the continued fraction are generalized pentagonal numbers A001318. A(x) = 1/(1 + 25*x - 2*X/(1 - X/(1 + 25*x - 7*X/(1 - 5*X/(1 + 25*x - 15*X/(1 - 12*X/(1 + 25*x - 26*X/(1 - 22*X/(1 + 25*x - ...))))))))), where the sequence [2, 1, 7, 5, 15, 12, 26, 22, ...] of unsigned coefficients in the partial numerators is obtained by swapping pairs of adjacent generalized pentagonal numbers. G.f. as a J-fraction: A(x) = 1/(1 - 23*x - 2*X^2/(1 - 167*x - 5*7*X^2/(1 - 455*x - 12*15*X^2/(1 - 887*x - ...)))). Let B(x) = 1/(1 - x)*A(x/(1 - x)), that is, B(x) is the binomial transform of A(x). Then B(x/24) is the o.g.f. for A079144. (End) a(n) == 23^n ( mod (2^7)*(3^2) ). - Peter Bala, Dec 25 2021 EXAMPLE G.f. = 1 + 23*x + 1681*x^2 +257543*x^3 + 67637281*x^4 + 27138236663*x^5 + ... MAPLE A002439 := proc(n) option remember; if n = 0 then 1; else (-4)^n-add((-9)^k*binomial(2*n+1, 2*k)*procname(n-k), k=1..n+1) ; end if; end proc: MATHEMATICA a[n_] := a[n] = (-4)^n - Sum[(-9)^k*Binomial[2n + 1, 2k]*a[n-k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Dec 05 2011, after Maple *) With[{nn=30}, Take[CoefficientList[Series[Sin[2x]/(2Cos[3x]), {x, 0, nn}], x]Range[0, nn-1]!, {2, -1, 2}]] (* Harvey P. Dale, Feb 05 2012 *) a[n_] := -(-4)^n 3^(1 + 2 n) EulerE[1 + 2 n, 1/6] (* Bill Gosper, Oct 12 2015 *) PROG (PARI) {a(n) = my(m=n+1); if( m<2, m>0, (-4)^(m-1) - sum(k=1, m, (-9)^k * binomial(2*m-1, 2*k) * a(n-k)))}; /* Michael Somos, Dec 11, 1999 */ (Magma) m:=32; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Sin(2*x)/(2*Cos(3*x)) )); [Factorial(2*n-1)*b[2*n-1]: n in [1..Floor((m-2)/2)]]; // G. C. Greubel, Jul 04 2019 (Sage) m = 32; T = taylor(sin(2*x)/(2*cos(3*x)), x, 0, m); [factorial(2*n+1)*T.coefficient(x, 2*n+1) for n in (0..(m-2)/2)] # G. C. Greubel, Jul 04 2019 CROSSREFS Cf. A000364, A000464, A002105, A079144, A158690. Bisections: A156175, A156176. Twice this sequence gives A000191. A208679, A208680, A208681. Sequence in context: A330658 A034243 A183480 * A229814 A326365 A319508 Adjacent sequences: A002436 A002437 A002438 * A002440 A002441 A002442 KEYWORD nonn,easy,nice AUTHOR EXTENSIONS More terms from Michael Somos Offset changed from 1 to 0 by N. J. A. Sloane, Dec 11 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 09:12 EST 2022. Contains 358585 sequences. (Running on oeis4.)