login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208680
Kashaev invariant for the (7,2)-torus knot.
6
1, 143, 58081, 48571823, 69471000001, 151763444497103, 470164385248041121, 1960764928973430783983, 10591336845363318048877441, 71933835058256664782546056463, 599982842750416411984319126244961
OFFSET
1,2
COMMENTS
Compare with A156370. For other Kashaev invariants see A002439 ((3,2)-torus knot), A208679 and A208681.
FORMULA
E.g.f.: 1/2*sin(2*x)/cos(7*x) = x + 143*x^3/3! + 58081*x^5/5! + ....
a(n) = (-1)^n/(4*n+4)*28^(2*n+1)*sum {k = 1..28} X(k)*B(2*n+2,k/28), where B(n,x) is a Bernoulli polynomial and X(n) is a periodic function modulo 28 given by X(n) = 0 except for X(28*n+5) = X(28*n+23) = 1 and X(28*n+9) = X(28*n+19) = -1.
a(n) = 1/2*(-1)^(n+1)*L(-2*n-1,X) in terms of the associated L-series attached to the periodic arithmetical function X.
From Peter Bala, May 16 2017: (Start)
O.g.f. as continued fraction: A(x) = 1/(1 + 25*x - 6*28*x/(1 - 8*28*x/(1 + 25*x -...- n*(7*n-1)*28*x/(1 - n*(7*n+1)*28*x/(1 + 25*x - ... ))))).
Also, A(x) = 1/(1 + 81*x - 8*28*x/(1 - 6*28*x/(1 + 81*x -...- n*(7*n+1)*28*x/(1 - n*(7*n-1)*28*x/(1 + 81*x - ... ))))). (End)
a(n) ~ sin(Pi/7) * 2^(4*n) * 7^(2*n-1) * n^(2*n-1/2) / (Pi^(2*n-1/2) * exp(2*n)). - Vaclav Kotesovec, May 18 2017
CROSSREFS
Cf. A002439 ((3,2)-torus knot), A156370, A208679, A208681.
Sequence in context: A029555 A265102 A046179 * A204683 A205159 A205308
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Mar 01 2012
STATUS
approved