login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208681
Kashaev's invariant for the (9,2)-torus knot.
7
1, 239, 160801, 222359759, 525750911041, 1898604115708079, 9723130520022672481, 67030256200148854573199, 598528825179130480174293121, 6719801498668147110144664875119, 92651189588518508157161032926540961
OFFSET
1,2
COMMENTS
Compare with A156652. For other Kashaev invariants see A002439, A208679 and A208680.
From Peter Bala, Dec 25 2021: (Start)
We make the following conjectures:
1) Taking the sequence modulo an integer k gives an eventually periodic sequence with period dividing phi(k). For example, the sequence taken modulo 21 begins [1, 8, 4, 20, 13, 17, 1, 8, 4, 20, 13, 17, 1, 8, 4, 20, 13, 17, ...], which appears to be a purely periodic sequence with period 6 = (1/2)*phi(21).
2) For i >= 0, define a_i(n) = a(n+i). Then for each i the Gauss congruences a_i(n*p^k) == a_i(n*p^(k-1)) ( mod p^k ) hold for all prime p and positive integers n and k. If true, then for each i the expansion of exp(Sum_{n >= 1} a_i(n)*x^n/n) has integer coefficients. (End)
FORMULA
E.g.f.: 1/2*sin(2*x)/cos(9*x) = x + 239*x^3/3! + 160801*x^5/5! + ....
a(n) = (-1)^n/(4*n+4)*36^(2*n+1)*sum {k = 1..36} X(k)*B(2*n+2,k/36), where B(n,x) is a Bernoulli polynomial and X(n) is a periodic function modulo 36 given by X(n) = 0 except for X(36*n+7) = X(36*n+29) = 1 and X(36*n+11) = X(36*n+25) = -1.
a(n) = 1/2*(-1)^(n+1)*L(-2*n-1,X) in terms of the associated L-series attached to the periodic arithmetical function X.
From Peter Bala, May 16 2017: (Start)
O.g.f. (with offset 0) as continued fraction: A(x) = 1/(1 + 49*x - 8*36*x/(1 - 10*36*x/(1 + 49*x -...- n*(9*n-1)*36*x/(1 - n*(9*n+1)*36*x/(1 + 49*x - ... ))))).
Also, A(x) = 1/(1 + 121*x - 10*36*x/(1 - 8*36*x/(1 + 121*x -...- n*(9*n+1)*36*x/(1 - n*(9*n-1)*36*x/(1 + 121*x - ... ))))). (End)
a(n) ~ sin(Pi/9) * 2^(4*n) * 3^(4*n-2) * n^(2*n-1/2) / (Pi^(2*n-1/2) * exp(2*n)). - Vaclav Kotesovec, May 18 2017
From Peter Bala, Dec 25 2021: (Start)
a(1) = 1, a(n) = (-4)^(n-1) - Sum_{k = 1..n} (-81)^k*C(2*n-1,2*k)*a(n-k).
a(n) == 239^(n-1) mod ( (2^8)*(3^4)*5 ). (End)
MAPLE
A208681 := proc(n) option remember; if n = 1 then 1; else (-4)^(n-1) - add((-81)^k*binomial(2*n-1, 2*k)*procname(n-k), k=1..n) ; end if; end proc:
seq(A208681(n), n = 1..20) # Peter Bala, Dec 25 2021
MATHEMATICA
a[n_] := (2n-1)! SeriesCoefficient[(1/2)(Sin[2x]/ Cos[9x]), {x, 0, 2n-1}];
Table[a[n], {n, 1, 11}] (* Jean-François Alcover, Sep 23 2022 *)
CROSSREFS
Cf. A002439 ((3,2)-torus knot), A156652, A208679, A208680.
Sequence in context: A223788 A223830 A223974 * A221327 A221302 A072173
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Mar 01 2012
STATUS
approved