login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208678
Row sums of triangle A132623.
5
1, 3, 8, 29, 157, 1144, 10187, 105600, 1241794, 16287457, 235308853, 3708090433, 63234233743, 1159318599835, 22725352050303, 474059968069223, 10481049913889360, 244727123398669044, 6015958354315188049, 155261610128701766290, 4196413541685139001486
OFFSET
1,2
COMMENTS
Triangle T = A132623 is generated by sums of matrix powers of itself such that:
T(n,k) = Sum_{j=1..n-k-1} [T^j](n-1,k) with T(n+1,n) = n+1 and T(n,n)=0 for n>=0.
Also, column k of triangle T = A132623 obeys the rule:
(k+1)*x^(k+1) = Sum_{n>=0} T(n,k) * x^n * (1-x)^(n-k) / Product_{j=k+1..n-1} (1+j*x).
EXAMPLE
Triangle A132623 begins:
0;
1, 0;
1, 2, 0;
3, 2, 3, 0;
14, 8, 3, 4, 0;
87, 46, 15, 4, 5, 0;
669, 338, 102, 24, 5, 6, 0; ...
for which this sequence equals the row sums.
MATRIX POWER SERIES PROPERTY OF T = A132623:
Let T = A132623, then [I - T]^-1 = Sum_{n>=0} T^n yields:
1;
1, 1;
3, 2, 1;
14, 8, 3, 1;
87, 46, 15, 4, 1;
669, 338, 102, 24, 5, 1; ...
which equals T shifted up 1 row (but with 1's in the main diagonal).
ILLUSTRATE G.F. FOR COLUMN k OF T = A132623:
k=0: x = T(1,0)*x*(1-x) + T(2,0)*x^2*(1-x)^2/((1+x)) + T(3,0)*x^3*(1-x)^3/((1+x)*(1+2*x)) + T(4,0)*x^4*(1-x)^4/((1+x)*(1+2*x)*(1+3*x)) +...
k=1: 2*x^2 = T(2,1)*x^2*(1-x) + T(3,1)*x^3*(1-x)^2/((1+2*x)) + T(4,1)*x^4*(1-x)^3/((1+2*x)*(1+3*x)) + T(5,1)*x^5*(1-x)^4/((1+2*x)*(1+3*x)*(1+4*x)) +...
k=2: 3*x^3 = T(3,2)*x^3*(1-x) + T(4,2)*x^4*(1-x)^2/((1+3*x)) + T(5,2)*x^5*(1-x)^3/((1+3*x)*(1+4*x)) + T(6,2)*x^6*(1-x)^4/((1+3*x)*(1+4*x)*(1+5*x)) +...
PROG
(PARI) /* Get row sums using the g.f. for columns in triangle A132623: */
{A132623(n, k)=if(n<k+1, 0, polcoeff((k+1)*x^(k+1)-sum(m=k+1, n-1, A132623(m, k)*x^m*(1-x)^(m-k)/prod(j=k+1, m-1, 1+j*x+x*O(x^n))), n))}
{for(n=0, 20, print1(sum(k=0, n, A132623(n, k)), ", "))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 14 2012
STATUS
approved