login
A208675
Number of words, either empty or beginning with the first letter of the ternary alphabet, where each letter of the alphabet occurs n times and letters of neighboring word positions are equal or neighbors in the alphabet.
9
1, 1, 5, 37, 309, 2751, 25493, 242845, 2360501, 23301307, 232834755, 2349638259, 23905438725, 244889453043, 2523373849701, 26132595017037, 271826326839477, 2838429951771795, 29740725671232119, 312573076392760183, 3294144659048391059, 34802392680979707121
OFFSET
0,3
COMMENTS
Also the number of (3*n-1)-step walks on 3-dimensional cubic lattice from (1,0,0) to (n,n,n) with positive unit steps in all dimensions such that the absolute difference of the dimension indices used in consecutive steps is <= 1.
LINKS
Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
FORMULA
From Michael Somos, Jun 03 2012: (Start)
a(n) = A108625(n-1, n).
a(n) = Hypergeometric3F2([1-n, -n, n], [1, 1], 1).
(n+1)^2 * (1 -4*n +5*n^2) * a(n+1) = (5 -5*n -26*n^2 +11*n^3 +55*n^4) * a(n) + (n-1)^2 * (2 +6*n +5*n^2) * a(n-1). (End)
a(n) ~ sqrt((5-sqrt(5))/10)/(2*Pi*n) * ((1+sqrt(5))/2)^(5*n). - Vaclav Kotesovec, Dec 06 2012. Equivalently, a(n) ~ phi^(5*n - 1/2) / (2 * 5^(1/4) * Pi * n), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 07 2021
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 3*x^2 + 15*x^3 + 94*x^4 + 668*x^5 + 5144*x^6 + 41884*x^7 + 355307*x^8 + ... appears to have integer coefficients. Cf. A108628. - Peter Bala, Jan 12 2016
From Peter Bala, Apr 05 2022: (Start)
a(n) = Sum_{k = 0..n} binomial(n,k)*binomial(n-1,k)*binomial(n+k-1,k).
Using binomial(-n,k) = (-1)^k*binomial(n+k-1,k) for nonnegative k, we have:
a(-n) = Sum_{k} binomial(-n,k)*binomial(-n-1,k)*binomial(-n+k-1,k).
a(-n) = Sum_{k} (-1)^k* binomial(n+k-1,k)*binomial(n+k,k)*binomial(n,k)
a(-n) = (-1)^n*A108628(n-1),
for n >= 1.
a(n) = Sum_{k = 1..n} binomial(n,k)*binomial(n-1,k-1)*binomial(n+k-1,k-1) for n >= 1.
Equivalently, a(n) = [(x^n)*(y*z)^(n-1)] (x + y + z)^n*(x + y)^(n-1)*(y + z)^(n-1) for n >= 1.
a(n) = Sum_{k = 0..n-1} (-1)^k*binomial(n-1,k)*binomial(2*n-k-1,n-k)^2.
a(n) = (1/5)*(A005258(n) + 2*A005258(n-1)) for n >= 1.
a(n) = [x^n] 1/(1 - x)*P(n-1,(1 + x)/(1 - x)) for n >= 1, where P(n,x) denotes the n-th Legendre polynomial. Compare with A005258(n) = [x^n] 1/(1 - x)*P(n,(1 + x)/(1 - x)).
a(n) = B(n,n-1,n-1) in the notation of Straub, equation 24. Hence
a(n) = [(x^n)*(y*z)^(n-1)] 1/(1 - x - y - z + x*z + y*z - x*y*z) for n >= 1.
The supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k.
Conjectures:
1) a(n) = [(x*y)^n*z^(n-1)] 1/(1 - x - y - z + x*y + x*y*z) for n >= 1.
2) a(n) = - [(x*z)^(n-1)*(y^n)] 1/(1 + y + z + x*y + y*z + x*z + x*y*z) for n >= 1.
3) a(n) = [x^(n-1)*(y*z)^n] 1/(1 - x - x*y - y*z - x*z - x*y*z) for n >= 1.
(End)
From Peter Bala, Mar 17 2023: (Start)
For n >= 1:
a(n) = Sum_{k = 0..n} ((n-k)/(n+k))*binomial(n,k)^2*binomial(n+k,k).
a(n) = Sum_{k = 0..n} (-1)^(n+k-1) * ((n-k)/(n+k)) * binomial(n,k) * binomial(n+k,k)^2. (End)
EXAMPLE
a(2) = 5 = |{aabbcc, aabcbc, aabccb, ababcc, abccba}|.
a(3) = 37 = |{aaabbbccc, aaabbcbcc, aaabbccbc, aaabbcccb, aaabcbbcc, aaabcbcbc, aaabcbccb, aaabccbbc, aaabccbcb, aaabcccbb, aababbccc, aababcbcc, aababccbc, aababcccb, aabbabccc, aabbcccba, aabcbabcc, aabcbccba, aabccbabc, aabccbcba, aabcccbab, aabcccbba, abaabbccc, abaabcbcc, abaabccbc, abaabcccb, abababccc, ababcccba, abbaabccc, abbcccbaa, abcbaabcc, abcbccbaa, abccbaabc, abccbcbaa, abcccbaab, abcccbaba, abcccbbaa}|.
MAPLE
a:= n-> add(binomial(n-1, k)^2 *binomial(2*n-1-k, n-k), k=0..n):
seq(a(n), n=0..30); # Alois P. Heinz, Jun 26 2012
MATHEMATICA
a[n_]:= HypergeometricPFQ[{1-n, -n, n}, {1, 1}, 1] (* Michael Somos, Jun 03 2012 *)
PROG
(Magma)
A208675:= func< n | (&+[Binomial(n, j)*Binomial(n-1, j)*Binomial(n+j-1, j): j in [0..2*n]]) >;
[A208675(n): n in [0..30]]; // G. C. Greubel, Oct 05 2023
(SageMath)
def A208675(n): return sum(binomial(n, j)*binomial(n-1, j)*binomial(n+j-1, j) for j in range(n+1))
[A208675(n) for n in range(31)] # G. C. Greubel, Oct 05 2023
CROSSREFS
Column k=3 of A208673.
Sequence in context: A066381 A078253 A006442 * A084212 A358883 A323219
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 29 2012
STATUS
approved