login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066381
a(n) = Sum_{k=0..n} binomial(4*n,k).
5
1, 5, 37, 299, 2517, 21700, 190051, 1683218, 15033173, 135142796, 1221246132, 11083374659, 100946732307, 922205369324, 8446802334994, 77542088287444, 713250450657109, 6572130378649468, 60652194138406780, 560522209086365852
OFFSET
0,2
LINKS
FORMULA
G.f.: s/((s-2)*(3*s-4)) where s = o.g.f.(A002293) which satisfies 1-s+x*s^4 = 0. - Mark van Hoeij, May 05 2013
a(0) = 1, a(n) = 16*a(n-1)-2*(44*n^3-34*n^2-2*n+3)*(4*n-4)!/(n!*(3*n-1)!). - Tani Akinari, Sep 02 2014
a(n) are special values of the hypergeometric function 2F1, in Maple notation: a(n)=16^n-binomial(4*n,n+1)*hypergeom([1,-3*n+1],[n+2],-1), n=0,1,... . - Karol A. Penson, Jun 03 2015
a(n) ~ (256/27)^n * sqrt(3/(2*Pi*n)). - Vaclav Kotesovec, Jun 03 2015
a(n) = [x^n] 1/((1 - 2*x)*(1 - x)^(3*n)). - Ilya Gutkovskiy, Oct 25 2017
a(n) = Sum_{k=0..floor(n/2)} binomial(4*n+1,n-2*k). - Seiichi Manyama, Apr 09 2024
MAPLE
ogf := eval(s/((s-2)*(3*s-4)), s = RootOf(1-s+x*s^4, s));
series(ogf, x=0, 25); # Mark van Hoeij, May 05 2013
MATHEMATICA
Table[Sum[Binomial[4*n, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 03 2015 *)
PROG
(PARI) { for (n=0, 150, a=0; for (k=0, n, a+=binomial(4*n, k)); write("b066381.txt", n, " ", a) ) } \\ Harry J. Smith, Feb 12 2010
(Maxima) a[0]:1$ a[1]:5$ a[n]:=8*((3784*n^6-18764*n^5+34432*n^4 -28138*n^3+9028*n^2-24*n-315)*a[n-1]+16*(3-2*n)*(4*n-5)*(4*n-7)*(44*n^3-34*n^2-2*n+3)*a[n-2])/(3*n*(3*n-1)*(3*n-2)*(44*n^3-166*n^2 +198*n-73))$ makelist(a[n], n, 0, 1000); /* Tani Akinari, Sep 02 2014 */
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 23 2001
STATUS
approved