login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046636
Number of cubic residues mod 8^n.
2
1, 5, 37, 293, 2341, 18725, 149797, 1198373, 9586981, 76695845, 613566757, 4908534053, 39268272421, 314146179365, 2513169434917, 20105355479333, 160842843834661, 1286742750677285, 10293942005418277, 82351536043346213
OFFSET
0,2
LINKS
Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
E. Wilmer and O. Schirokauer, A note on Stephan's conjecture 25, 2004. [broken link]
E. Wilmer and O. Schirokauer, A note on Stephan's conjecture 25, 2004. [cached copy]
FORMULA
a(n) = (4*8^n + 3)/7.
a(n) = 8*a(n-1) - 3 (with a(0)=1). - Vincenzo Librandi, Nov 18 2010
From R. J. Mathar, Feb 28 2011: (Start)
a(n) = A046530(8^n) = A046630(3n).
G.f.: ( 1-4*x ) / ( (1-8*x)*(1-x) ). (End)
a(n+1) = A226308(3n+2). - Philippe Deléham, Feb 24 2014
MATHEMATICA
LinearRecurrence[{9, -8}, {1, 5}, 20] (* Jean-François Alcover, Jan 19 2019 *)
CROSSREFS
Cf. A007583.
Sequence in context: A262410 A089303 A164595 * A091126 A066381 A078253
KEYWORD
nonn
STATUS
approved