login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046530 Number of distinct cubic residues mod n. 24
1, 2, 3, 3, 5, 6, 3, 5, 3, 10, 11, 9, 5, 6, 15, 10, 17, 6, 7, 15, 9, 22, 23, 15, 21, 10, 7, 9, 29, 30, 11, 19, 33, 34, 15, 9, 13, 14, 15, 25, 41, 18, 15, 33, 15, 46, 47, 30, 15, 42, 51, 15, 53, 14, 55, 15, 21, 58, 59, 45, 21, 22, 9, 37, 25, 66, 23, 51, 69, 30, 71, 15, 25, 26, 63 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Cubic analog of A000224. - Steven Finch, Mar 01 2006

A074243 contains values of n such that a(n)=n. - Dmitri Kamenetsky, Nov 03 2012

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

S. R. Finch and Pascal Sebah, Squares and Cubes Modulo n, arXiv:math/0604465 [math.NT], 2005-2016.

S. Li, On the number of elements with maximal order in the multiplicative group modulo n, Acta Arithm. 86 (2) (1998) 113, see proof of theorem 2.1

FORMULA

a(n) = n - A257301(n). - Stanislav Sykora, Apr 21 2015

a(2^n) = A046630(n). a(3^n) = A046631(n). a(5^n) = A046633(n). a(7^n)=A046635(n). - R. J. Mathar, Sep 28 2017

MAPLE

A046530 := proc(n)

        local a, pf ;

        a := 1 ;

        if n = 1 then

                return 1;

        end if;

        for i in  ifactors(n)[2] do

                p := op(1, i) ;

                e := op(2, i) ;

                if p = 3 then

                        if e mod 3 = 0 then

                                a := a*(3^(e+1)+10)/13 ;

                        elif e mod 3 = 1 then

                                a := a*(3^(e+1)+30)/13 ;

                        else

                                a := a*(3^(e+1)+12)/13 ;

                        end if;

                elif p mod 3 = 2 then

                        if e mod 3 = 0 then

                                a := a*(p^(e+2)+p+1)/(p^2+p+1) ;

                        elif e mod 3 = 1 then

                                a := a*(p^(e+2)+p^2+p)/(p^2+p+1) ;

                        else

                                a := a*(p^(e+2)+p^2+1)/(p^2+p+1) ;

                        end if;

                else

                        if e mod 3 = 0 then

                                a := a*(p^(e+2)+2*p^2+3*p+3)/3/(p^2+p+1) ;

                        elif e mod 3 = 1 then

                                a := a*(p^(e+2)+3*p^2+3*p+2)/3/(p^2+p+1) ;

                        else

                                a := a*(p^(e+2)+3*p^2+2*p+3)/3/(p^2+p+1) ;

                        end if;

                end if;

        end do:

        a ;

end proc:

seq(A046530(n), n=1..40) ; # R. J. Mathar, Nov 01 2011

MATHEMATICA

Length[Union[#]]& /@ Table[Mod[k^3, n], {n, 75}, {k, n}] (* Jean-Fran├žois Alcover, Aug 30 2011 *)

Length[Union[#]]&/@Table[PowerMod[k, 3, n], {n, 80}, {k, n}] (* Harvey P. Dale, Aug 12 2015 *)

PROG

(Haskell)

import Data.List (nub)

a046530 n = length $ nub $ map (`mod` n) $

                           take (fromInteger n) $ tail a000578_list

-- Reinhard Zumkeller, Aug 01 2012

(PARI) g(p, e)=if(p==3, (3^(e+1)+if(e%3==1, 30, if(e%3, 12, 10)))/13, if(p%3==2, (p^(e+2)+if(e%3==1, p^2+p, if(e%3, p^2+1, p+1)))/(p^2+p+1), (p^(e+2)+if(e%3==1, 3*p^2+3*p+2, if(e%3, 3*p^2+2*p+3, 2*p^2+3*p+3)))/3/(p^2+p+1)))

a(n)=my(f=factor(n)); prod(i=1, #f[, 1], g(f[i, 1], f[i, 2])) \\ Charles R Greathouse IV, Jan 03 2013

CROSSREFS

For number of k-th power residues mod n, see A000224 (k=2), A052273 (k=4), A052274 (k=5), A052275 (k=6), A085310 (k=7), A085311 (k=8), A085312 (k=9), A085313 (k=10), A085314 (k=12), A228849 (k=13).

Cf. A000578, A257301.

Sequence in context: A289630 A023160 A085312 * A003558 A216066 A234094

Adjacent sequences:  A046527 A046528 A046529 * A046531 A046532 A046533

KEYWORD

nonn,mult,easy,nice

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 13:38 EST 2018. Contains 299581 sequences. (Running on oeis4.)