login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257301
Number of cubic nonresidues modulo n.
5
0, 0, 0, 1, 0, 0, 4, 3, 6, 0, 0, 3, 8, 8, 0, 6, 0, 12, 12, 5, 12, 0, 0, 9, 4, 16, 20, 19, 0, 0, 20, 13, 0, 0, 20, 27, 24, 24, 24, 15, 0, 24, 28, 11, 30, 0, 0, 18, 34, 8, 0, 37, 0, 40, 0, 41, 36, 0, 0, 15, 40, 40, 54, 27, 40, 0, 44, 17, 0, 40, 0, 57, 48, 48, 12, 55, 44, 48, 52, 30
OFFSET
1,7
COMMENTS
a(n) is the number of values r, 0<=r<n, such that, for p=3 and for any m>=0, (m^p)%n != r. Compared to quadratic nonresidues (p=2, sequence A095972), the most evident difference is the frequent occurrence of a(n)=0 (for values of n which belong to A074243).
LINKS
FORMULA
a(n) = n - A046530(n).
Satisfies a(A074243(n))=0.
Satisfies a(n) <= n-3 (residues 0, 1, and n-1 are always present).
a(n) = n - A046530(n). - Robert Israel, Apr 20 2015
EXAMPLE
a(5)=0, because the set {(k^3)%5}, with k=0..4, evaluates to {0,1,3,2,4},
with no missing residue values.
a(7)=4, because the set {(k^3)%7}, with k=0..6, evaluates to
{0,1,1,6,1,6,6}, with missing residue values {2,3,4,5}.
MAPLE
seq(n - nops({seq(a^3 mod n, a=0..n-1)}), n=1..100); # Robert Israel, Apr 20 2015
MATHEMATICA
Table[Length[Complement[Range[n - 1], Union[Mod[Range[n]^3, n]]]], {n, 100}] (* Vincenzo Librandi, Apr 20 2015 *)
PROG
(PARI) nrespowp(n, p) = {my(v=vector(n), d=0);
for(r=0, n-1, v[1+(r^p)%n]+=1);
for(k=1, n, if(v[k]==0, d++));
return(d); }
a(n) = nrespowp(n, 3)
(PARI) g(p, e)=if(p==3, (3^(e+1)+if(e%3==1, 30, if(e%3, 12, 10)))/13, if(p%3==2, (p^(e+2)+if(e%3==1, p^2+p, if(e%3, p^2+1, p+1)))/(p^2+p+1), (p^(e+2)+if(e%3==1, 3*p^2+3*p+2, if(e%3, 3*p^2+2*p+3, 2*p^2+3*p+3)))/3/(p^2+p+1)))
a(n)=my(f=factor(n)); n-prod(i=1, #f~, g(f[i, 1], f[i, 2])) \\ Charles R Greathouse IV, Apr 20 2015
CROSSREFS
Nonresidues for other exponents: A095972 (p=2), A257302 (p=4), A257303 (p=5).
Sequence in context: A316965 A241284 A019322 * A298801 A340297 A369928
KEYWORD
nonn
AUTHOR
Stanislav Sykora, Apr 19 2015
STATUS
approved