login
A257303
Number of 5th power nonresidues modulo n.
3
0, 0, 0, 1, 0, 0, 0, 3, 2, 0, 8, 3, 0, 0, 0, 7, 0, 4, 0, 5, 0, 16, 0, 9, 20, 0, 8, 7, 0, 0, 24, 15, 24, 0, 0, 15, 0, 0, 0, 15, 32, 0, 0, 35, 10, 0, 0, 21, 6, 40, 0, 13, 0, 16, 40, 21, 0, 0, 0, 15, 48, 48, 14, 30, 0, 48, 0, 17, 0, 0, 56, 37, 0, 0, 60, 19, 56, 0, 0, 35, 26, 64, 0, 21, 0, 0, 0, 73, 0
OFFSET
1,8
COMMENTS
a(n) is the number of values r, 0<=r<n, such that, for p=5 and for any m>=0, (m^p)%n != r.
LINKS
FORMULA
a(n) = n-A052274(n).
Satisfies a(n) <= n-3 (residues 0, 1, and n-1 are always present).
MATHEMATICA
Table[Length[Complement[Range[n - 1], Union[Mod[Range[n]^5, n]]]], {n, 100}] (* Vincenzo Librandi, Apr 20 2015 *)
PROG
(PARI) nrespowp(n, p) = {my(v=vector(n), d=0);
for(r=0, n-1, v[1+(r^p)%n]+=1);
for(k=1, n, if(v[k]==0, d++));
return(d); }
a(n) = nrespowp(n, 5)
CROSSREFS
Cf. A095972 (p=2), A257301 (p=3), A257302 (p=4).
Sequence in context: A067585 A173787 A116191 * A048199 A335998 A152441
KEYWORD
nonn
AUTHOR
Stanislav Sykora, Apr 19 2015
STATUS
approved