login
A257302
Number of 4th power nonresidues modulo n.
3
0, 0, 1, 2, 3, 2, 3, 6, 5, 6, 5, 8, 9, 6, 11, 14, 12, 10, 9, 16, 13, 10, 11, 20, 19, 18, 17, 20, 21, 22, 15, 28, 21, 24, 27, 28, 27, 18, 31, 36, 30, 26, 21, 32, 37, 22, 23, 44, 27, 38, 41, 44, 39, 34, 43, 48, 37, 42, 29, 52, 45, 30, 47, 58, 57, 42, 33, 58
OFFSET
1,4
COMMENTS
a(n) is the number of values r, 0<=r<n, such that, for p=4 and for any m>=0, (m^p)%n != r.
LINKS
FORMULA
a(n) = n - A052273(n).
Satisfies a(n) <= n-2 (residues 0 and 1 are always present).
MATHEMATICA
Table[Length[Complement[Range[n - 1], Union[Mod[Range[n]^4, n]]]], {n, 100}] (* Vincenzo Librandi, Apr 20 2015 *)
PROG
(PARI) nrespowp(n, p) = {my(v=vector(n), d=0);
for(r=0, n-1, v[1+(r^p)%n]+=1);
for(k=1, n, if(v[k]==0, d++));
return(d); }
a(n) = nrespowp(n, 4)
CROSSREFS
Cf. A095972 (p=2), A257301 (p=3), A257303 (p=5).
Sequence in context: A088212 A085208 A332553 * A268715 A085211 A085212
KEYWORD
nonn
AUTHOR
Stanislav Sykora, Apr 19 2015
STATUS
approved