login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257300
Number of Motzkin paths of length n with no peaks at level 2.
3
1, 1, 2, 4, 8, 17, 38, 88, 210, 514, 1285, 3270, 8447, 22100, 58455, 156077, 420153, 1139155, 3108095, 8527675, 23514124, 65127571, 181111940, 505487115, 1415502195, 3975790024, 11197966459, 31619946886, 89496047586, 253858251337, 721531869889, 2054639741185
OFFSET
0,3
LINKS
FORMULA
G.f.: 1/(1-x-x^2/(1-x+x^2*(1-M(x)))), where M(x) is the g.f. of Motzkin numbers A001006.
a(n) ~ 3^(n+7/2) / (50*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 21 2015
Conjecture: n*a(n) +(-5*n+3)*a(n-1) +6*(n)*a(n-2) +2*(n-9)*a(n-3) +6*(-n+4)*a(n-4) +(n-6)*a(n-5) +3*(-n+3)*a(n-6)=0. - R. J. Mathar, Sep 24 2016
EXAMPLE
For n=4 we have 8 paths: HHHH, UDUD, UHDH, HUHD, UHHD, UDHH, HUDH and HHUD.
MATHEMATICA
CoefficientList[Series[1/(1-x-x^2/(1-x+x^2*(1-(1-x-Sqrt[1-2*x-3*x^2])/(2*x^2)))), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 21 2015 *)
PROG
(PARI) x='x + O('x^50); Vec(1/(1-x-x^2/(1-x+x^2*(1-(1-x-sqrt(1-2*x-3*x^2))/(2*x^2))))) \\ G. C. Greubel, Feb 14 2017
CROSSREFS
Cf. A089372.
Sequence in context: A119685 A025276 A006461 * A229202 A003007 A086615
KEYWORD
nonn
AUTHOR
STATUS
approved