login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046638
Number of cubic residues mod 10^n, or number of distinct n-digit endings of cubes.
2
1, 10, 63, 505, 5050, 47899, 466237, 4662370, 46308087, 461504593, 4615045930, 46111077091, 460913873941, 4609138739410, 46086465166623, 460840040641225, 4608400406412250, 46083388790070379, 460830811531341997, 4608308115313419970, 46083004243912737927
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,0,134,-1340,0,-1133,11330,0,1000,-10000).
FORMULA
a(n) = A046530(10^n) = A046630(n)*A046633(n). - R. J. Mathar, Feb 28 2011
a(n) ~ 100/217 * 10^n, so large terms start 460829493.... - Charles R Greathouse IV, Jan 03 2013
G.f.: -(10000*x^9+9000*x^8-5130*x^6-2357*x^5+259*x^3+37*x^2-1) / ((x-1)*(2*x-1)*(5*x-1)*(10*x-1)*(x^2+x+1)*(25*x^2+5*x+1)*(4*x^2+2*x+1)). - Alois P. Heinz, Jan 03 2013
EXAMPLE
a(1)=10 because a cube may end with any digit (10 possible combinations); a(2)=63 because a cube may end with 63 2-digit combinations (including leading zeros).
A cube may end with 63 different 2-digit combinations: 00, 01, 03, 04, 07, 08, 09, 11, 12, 13, 16, 17, 19, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 36, 37, 39, 41, 43, 44, 47, 48, 49, 51, 52, 53, 56, 57, 59, 61, 63, 64, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 81, 83, 84, 87, 88, 89, 91, 92, 93, 96, 97, 99. Numbers ending with 14 say cannot be cubes. See also A075821, A075823. - Zak Seidov, Oct 18 2002
PROG
(PARI) a(n)=(5^(n+2)+30)\31*((4<<n+6)\7) \\ Charles R Greathouse IV, Jan 03 2013
CROSSREFS
Sequence in context: A298716 A271754 A075755 * A101467 A162473 A138661
KEYWORD
nonn,easy,base
EXTENSIONS
Edited by N. J. A. Sloane, Oct 19 2008
STATUS
approved